Design and experiment of magnetostrictive-electromagnetic hybrid floor vibration energy harvester

被引:0
|
作者
Liu, Huifang [1 ]
Wang, Chao [1 ]
Zhao, Luyao [1 ]
Chang, Yunlong [1 ]
Gao, Yifei [1 ]
Ren, Teng [1 ]
机构
[1] Shenyang Univ Technol, Sch Mech Engn, Shenyang 110870, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
vibration energy harvester; microelectronic devices; force amplification mechanism; central mover; flux density; WIRELESS; OPTIMIZATION; GENERATION;
D O I
10.1088/1361-665X/ad8823
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper proposes using a magnetostrictive-electromagnetic hybrid floor vibration energy harvester (MEHH), which employs the Villari effect and Faraday's Law of Electromagnetic Induction. This harvester can generate three output voltages simultaneously when subjected to the same vibration source, and it can supply power to multiple microelectronic devices simultaneously, thereby enhancing the efficiency of vibrational energy harvesting. The magnetostrictive component (MH) utilizes a rod-shaped Terfenol-D as the core element. A two-stage force amplification mechanism has been incorporated to amplify and process the input force generated by the vibration source and apply it to both ends of the Terfenol-D rod to enhance energy conversion efficiency. An optimization analysis of the primary mechanism's dimensions was conducted to determine the final optimized dimensions and obtain a force magnification of 24.01. The electromagnetic section (EH) has a permanent magnet as the core element, and the central mover, which consists of the permanent magnet, floats up and down in the axial direction inside the hollow tube. The flux density generated by different forms of central movers is simulated and studied to determine the optimal arrangement of the central movers. During the experiment, the MEHH was excited by 240 N, the peak voltage of MH output reached 2.66 V, and the maximum power generated by the matched load resistor reached 334 mW. The peak voltage of EH output reached 1.59 V, and the maximum power generated by the matched load resistor reached 45.1 mW.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] New micro electromagnetic vibration energy harvester
    Lan, L. (27904176@qq.com), 1600, Central South University of Technology (44):
  • [42] Review of MEMS Electromagnetic Vibration Energy Harvester
    Tan, Yushan
    Dong, Ying
    Wang, Xiaohao
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (01) : 1 - 16
  • [43] An Electromagnetic Frequency Increased Vibration Energy Harvester
    Ashraf, Khalid
    Khir, Mohd Haris Md
    Dennis, John Ojur
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4231 - +
  • [44] Design and experiments of a column giant magnetostrictive energy harvester
    Meng A.
    Yang J.
    Jiang S.
    Liu F.
    Liu C.
    1600, Chinese Vibration Engineering Society (36): : 175 - 180
  • [45] Design and Experimental Verification of an Improved Magnetostrictive Energy Harvester
    Germer, M.
    Marschner, U.
    Flatau, A. B.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2017, 2017, 10164
  • [46] Piezoelectric-magnetostrictive vibration energy harvester using the strain energy method
    Cheraghi, Kaveh
    Esfandiari, Aboozar
    Mohammadi, Saber
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2025,
  • [47] Topology Design Optimization of Electromagnetic Vibration Energy Harvester to Maximize Output Power
    Lee, Jaewook
    Yoon, Sang Won
    JOURNAL OF MAGNETICS, 2013, 18 (03) : 283 - 288
  • [48] Analysis and optimal design of a vibration isolation system combined with electromagnetic energy harvester
    Diala, Uchenna
    Mofidian, S. M. Mahdi
    Lang, Zi-Qiang
    Bardaweel, Hamzeh
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2019, 30 (16) : 2382 - 2395
  • [50] Design Optimization of a Magnetically Levitated Electromagnetic Vibration Energy Harvester for Body Motion
    Pancharoen, K.
    Zhu, D.
    Beeby, S. P.
    16TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2016), 2016, 773