The vector derivative nonlinear Schrödinger equation on the half-line

被引:0
|
作者
Liu, Huan [1 ]
Geng, Xianguo [1 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan,450001, China
关键词
Dinger equation - Initial boundary problems - Initial-boundary value problems - Matrix functions - Riemann Hilbert problems - Spectral function - Transform methods - Unknown boundary;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:148 / 173
相关论文
共 50 条
  • [21] Riemann-Hilbert approach to coupled nonlinear Schrödinger equations on a half-line
    Wang, Shun
    Li, Jian
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (03) : 1496 - 1514
  • [22] On Schrödinger Operators with Inverse Square Potentials on the Half-Line
    Jan Dereziński
    Serge Richard
    Annales Henri Poincaré, 2017, 18 : 869 - 928
  • [23] On discretizations of the vector nonlinear Schrödinger equation
    Department of Applied Mathematics, University of Colorado-Boulder, Boulder, CO 80309, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (287-304):
  • [24] On dynamics of quantum states generated by the Cauchy problem for the Schrödinger equation with degeneration on the half-line
    Sakbaev V.Zh.
    Journal of Mathematical Sciences, 2008, 151 (1) : 2741 - 2753
  • [25] The solution of the global relation for the derivative nonlinear Schrodinger equation on the half-line
    Lenells, Jonatan
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (06) : 512 - 525
  • [26] On a Hierarchy of Vector Derivative Nonlinear Schrödinger Equations
    Smirnov, Aleksandr O.
    Frolov, Eugene A.
    Dmitrieva, Lada L.
    SYMMETRY-BASEL, 2024, 16 (01):
  • [27] Bounds for Schrödinger Operators on the Half-Line Perturbed by Dissipative Barriers
    Alexei Stepanenko
    Integral Equations and Operator Theory, 2021, 93
  • [28] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [29] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967
  • [30] Strange Tori of the Derivative Nonlinear Schrödinger Equation
    Y. Charles Li
    Letters in Mathematical Physics, 2007, 80 : 83 - 99