Parameter optimization for elliptic-parabolic systems by an adaptive trust-region reduced basis method

被引:0
|
作者
Azmi, Behzad [1 ]
Petrocchi, Andrea [1 ]
Volkwein, Stefan [1 ]
机构
[1] Department of Mathematics and Statistics, University of Konstanz, Konstanz, Germany
关键词
D O I
10.1016/bs.aams.2024.07.001
中图分类号
学科分类号
摘要
47
引用
下载
收藏
页码:109 / 145
相关论文
共 50 条
  • [21] Trust-region methods for nonlinear elliptic equations with radial basis functions
    Bernal, Francisco
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (07) : 1743 - 1763
  • [22] Optimization of the Hardware Layer for IoT Systems Using a Trust-Region Method With Adaptive Forward Finite Differences
    Bekasiewicz, Adrian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (11) : 9498 - 9512
  • [23] Nonmonotone Adaptive Trust-region Method for Nonlinear Equations
    Yuan, Dongjin
    Zhao, Haiyan
    Wang, Fu
    DCABES 2008 PROCEEDINGS, VOLS I AND II, 2008, : 150 - 153
  • [24] NUMERICAL HOMOGENIZATION OF A NONLINEARLY COUPLED ELLIPTIC-PARABOLIC SYSTEM, REDUCED BASIS METHOD, AND APPLICATION TO NUCLEAR WASTE STORAGE
    Gloria, Antoine
    Goudon, Thierry
    Krell, Stella
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (13): : 2523 - 2560
  • [25] An adaptive trust-region method without function evaluations
    Geovani N. Grapiglia
    Gabriel F. D. Stella
    Computational Optimization and Applications, 2022, 82 : 31 - 60
  • [26] Impulse noise removal by an adaptive trust-region method
    Morteza Kimiaei
    Farzad Rahpeymaii
    Soft Computing, 2019, 23 : 11901 - 11923
  • [27] Impulse noise removal by an adaptive trust-region method
    Kimiaei, Morteza
    Rahpeymaii, Farzad
    SOFT COMPUTING, 2019, 23 (22) : 11901 - 11923
  • [28] An adaptive trust-region method without function evaluations
    Grapiglia, Geovani N.
    Stella, Gabriel F. D.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (01) : 31 - 60
  • [29] A trust-region method with a conic model for unconstrained optimization
    Qu, Shao-Jian
    Jiang, Su-Da
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (15) : 1780 - 1808
  • [30] An efficient nonmonotone trust-region method for unconstrained optimization
    Masoud Ahookhosh
    Keyvan Amini
    Numerical Algorithms, 2012, 59 : 523 - 540