An adjoint-based adaptive error approximation of functionals by the hybridizable discontinuous Galerkin method for second-order elliptic equations

被引:0
|
作者
Cockburn, Bernardo [1 ]
Xia, Shiqiang [1 ]
机构
[1] School of Mathematics, University of Minnesota, Minneapolis,MN,55455, United States
基金
美国国家科学基金会;
关键词
Errors - Galerkin methods - Mesh generation - Numerical methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] HP-ADAPTIVE CELATUS ENRICHED DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC SOURCE PROBLEMS
    Giani, Stefano
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : B1391 - B1418
  • [32] Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems
    Fabien, Maurice S.
    Knepley, Matthew G.
    Riviere, Beatrice M.
    JOURNAL OF NUMERICAL MATHEMATICS, 2020, 28 (03) : 161 - 174
  • [33] A high-order hybridizable discontinuous Galerkin method for elliptic interface problems
    Huynh, L. N. T.
    Nguyen, N. C.
    Peraire, J.
    Khoo, B. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (02) : 183 - 200
  • [34] Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations
    Huang, Hongying
    Chen, Zheng
    Li, Jin
    Yan, Jue
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 744 - 765
  • [35] A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients
    Ewing, R
    Iliev, O
    Lazarov, R
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (04): : 1334 - 1350
  • [36] Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations
    Hongying Huang
    Zheng Chen
    Jin Li
    Jue Yan
    Journal of Scientific Computing, 2017, 70 : 744 - 765
  • [37] Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations
    Dobrev, Veselin A.
    Lazarov, Raytcho D.
    Vassilevski, Panayot S.
    Zikatanov, Ludmil T.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13 (09) : 753 - 770
  • [38] A computational study of the weak Galerkin method for second-order elliptic equations
    Mu, Lin
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    NUMERICAL ALGORITHMS, 2013, 63 (04) : 753 - 777
  • [39] A computational study of the weak Galerkin method for second-order elliptic equations
    Lin Mu
    Junping Wang
    Yanqiu Wang
    Xiu Ye
    Numerical Algorithms, 2013, 63 : 753 - 777
  • [40] A DEEP LEARNING GALERKIN METHOD FOR THE SECOND-ORDER LINEAR ELLIPTIC EQUATIONS
    Li, Jian
    Zhang, Wen
    Yue, Jing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (04) : 427 - 441