A new hybrid neuro-fuzzy model with reinforcement learning for intelligent agents

被引:0
|
作者
Figueiredo, Karla [1 ]
Pacheco, Marco [2 ]
Vellasco, Marley [2 ]
Souza, Flávio [3 ]
机构
[1] Departamento de Engenharia Eletrônica, Universidade Estadual do Rio de Janeiro, Rua São Francisco Xavier, 524, Rio de Janeiro, 20550-900 RJ, Brazil
[2] Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de Sao Vicente, 225, Rio de Janeiro - 22453-900 RJ, Brazil
[3] Departamento de Engenharia de Sistemas e Computação, Universidade Estadual do Rio de Janeiro, Rua São Francisco Xavier, 524, Rio de Janeiro, 20550-900 RJ, Brazil
来源
Controle y Automacao | 2007年 / 18卷 / 02期
关键词
D O I
10.1590/s0103-17592007000200009
中图分类号
学科分类号
摘要
引用
收藏
页码:234 / 250
相关论文
共 50 条
  • [21] A Hybrid Neuro-Fuzzy and Feature Reduction Model for Classification
    Das, Himansu
    Naik, Bighnaraj
    Behera, H. S.
    ADVANCES IN FUZZY SYSTEMS, 2020, 2020
  • [22] A hybrid neuro-fuzzy model for mineral potential mapping
    Porwal, A
    Carranza, EJM
    Hale, M
    MATHEMATICAL GEOLOGY, 2004, 36 (07): : 803 - 826
  • [23] HYBRID NEURO-FUZZY CLASSIFIER BASED ON NEFCLASS MODEL
    Gliwa, Bogdan
    Byrski, Aleksander
    COMPUTER SCIENCE-AGH, 2011, 12 : 115 - 135
  • [24] A Hybrid Neuro-Fuzzy Model for Mineral Potential Mapping
    Alok Porwal
    E. J. M. Carranza
    M. Hale
    Mathematical Geology, 2004, 36 : 803 - 826
  • [25] Intelligent control of a motor drive using a hybrid neuro-fuzzy approach
    Melin, P
    Castillo, O
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 549 - 552
  • [26] How an adaptive learning rate benefits neuro-fuzzy reinforcement learning systems
    Kuremoto, Takashi (wu@yamaguchi-u.ac.jp), 1600, Springer Verlag (8794):
  • [27] How an Adaptive Learning Rate Benefits Neuro-Fuzzy Reinforcement Learning Systems
    Kuremoto, Takashi
    Obayashi, Masanao
    Kobayashi, Kunikazu
    Mabu, Shingo
    ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 324 - 331
  • [28] Hybrid Neuro-Fuzzy model for polynomial function approximation
    Shalinie, S.M.
    Rajaram, R.
    Journal of the Institution of Engineers (India), Part CP: Computer Engineering Division, 1999, 80 (01): : 13 - 14
  • [29] A neuro-fuzzy model for a new hybrid integrated Process Planning and Scheduling system
    Seker, Alper
    Erol, Serpil
    Botsali, Reha
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (13) : 5341 - 5351
  • [30] MULTIAGENT COORDINATION SYSTEMS BASED ON NEURO-FUZZY MODELS WITH REINFORCEMENT LEARNING
    Mendoza, Leonardo Forero
    Batista, Evelyn
    de Mello, Harold Dias
    Pacheco, Marco Aurelio
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 931 - 937