How an adaptive learning rate benefits neuro-fuzzy reinforcement learning systems

被引:2
|
作者
机构
[1] Kuremoto, Takashi
[2] Obayashi, Masanao
[3] Kobayashi, Kunikazu
[4] Mabu, Shingo
来源
Kuremoto, Takashi (wu@yamaguchi-u.ac.jp) | 1600年 / Springer Verlag卷 / 8794期
关键词
D O I
10.1007/978-3-319-11857-4_37
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] How an Adaptive Learning Rate Benefits Neuro-Fuzzy Reinforcement Learning Systems
    Kuremoto, Takashi
    Obayashi, Masanao
    Kobayashi, Kunikazu
    Mabu, Shingo
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT1, 2014, 8794 : 324 - 331
  • [2] Self-adaptive neuro-fuzzy systems: Structure and learning
    Lee, CSG
    Wang, JS
    [J]. 2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS, 2000, : 52 - 57
  • [3] MULTIAGENT COORDINATION SYSTEMS BASED ON NEURO-FUZZY MODELS WITH REINFORCEMENT LEARNING
    Mendoza, Leonardo Forero
    Batista, Evelyn
    de Mello, Harold Dias
    Pacheco, Marco Aurelio
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 931 - 937
  • [4] Neuro-Fuzzy Systems for Learning Analytics
    Casalino, Gabriella
    Castellano, Giovanna
    Zaza, Gianluca
    [J]. INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 1341 - 1350
  • [5] Interpretability and learning in neuro-fuzzy systems
    Paiva, RP
    Dourado, A
    [J]. FUZZY SETS AND SYSTEMS, 2004, 147 (01) : 17 - 38
  • [6] Neuro-Fuzzy Systems: Learning models
    de Carvalho, L. F.
    Monteiro, L. L.
    Nassar, S. M.
    de Azevedo, F. M.
    de Carvalho, H. J. T.
    [J]. International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 2, Proceedings, 2006, : 1122 - 1125
  • [7] Adaptive swarm behavior acquisition by a neuro-fuzzy system and reinforcement learning algorithm
    Kuremoto, Takashi
    Obayashi, Masanao
    Kobayashi, Kunikazu
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2009, 2 (04) : 724 - 744
  • [8] An adaptive learning algorithm for a neuro-fuzzy network
    Bodyanskiy, Yevgeniy
    Kolodyazhniy, Vitaliy
    Stephan, Andreas
    [J]. COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 68 - 75
  • [9] Robust hybrid learning approach for adaptive neuro-fuzzy inference systems
    Nik-Khorasani, Ali
    Mehrizi, Ali
    Sadoghi-Yazdi, Hadi
    [J]. FUZZY SETS AND SYSTEMS, 2024, 481
  • [10] Evolutionary Learning of Flexible Neuro-Fuzzy Systems
    Cpalka, Krzysztof
    Rutkowski, Leszek
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 969 - 975