Compact Electron Paramagnetic Resonance on a Chip Spectrometer Using a Single Sided Permanent Magnet

被引:1
|
作者
Segantini, Michele [1 ]
Marcozzi, Gianluca [1 ]
Elrifai, Tarek [2 ]
Shabratova, Ekaterina [1 ,3 ]
Hoeflich, Katja [3 ]
Deaconeasa, Mihaela [4 ]
Niemann, Volker [4 ]
Pietig, Rainer [4 ]
McPeak, Joseph E. [1 ]
Anders, Jens [2 ,5 ,6 ]
Naydenov, Boris [1 ]
Lips, Klaus [1 ,7 ]
机构
[1] Helmholtz Zentum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany
[2] Univ Stuttgart, Inst Smart Sensors, D-70569 Stuttgart, Germany
[3] Leibniz Inst Hochstfrequenztechn, Ferdinand Braun Inst GGmbH, D-12489 Berlin, Germany
[4] Bruker BioSpin GmbH, D-76275 Ettlingen, Germany
[5] Ctr Integrated Quantum Sci & Technol, D-70569 Stuttgart, Germany
[6] Ctr Integrated Quantum Sci & Technol, D-70569 Ulm, Germany
[7] Free Univ Berlin, Berlin Joint EPR Lab, Fachbereich Phys, D-14195 Berlin, Germany
来源
ACS SENSORS | 2024年 / 9卷 / 10期
关键词
EPR; EPRoC; single side permanentmagnet; spin counting; in situ; in vivo; operando; molecular tumbling; OXIDATIVE STABILITY; RELAXATION-TIMES; OLIVE OILS; EPR; SPECTROSCOPY;
D O I
10.1021/acssensors.4c00788
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electron paramagnetic resonance (EPR) spectroscopy provides information about the physical and chemical properties of materials by detecting paramagnetic states. Conventional EPR measurements are performed in high Q resonator using large electromagnets which limits the available space for operando experiments. Here we present a solution toward a portable EPR sensor based on the combination of the EPR-on-a-Chip (EPRoC) and a single-sided permanent magnet. This device can be placed directly into the sample environment (i.e., catalytic reaction vessels, ultrahigh vacuum deposition chambers, aqueous environments, etc.) to conduct in situ and operando measurements. The EPRoC reported herein is comprised of an array of 14 voltage-controlled oscillator (VCO) coils oscillating at 7 GHz. By using a single grain of crystalline BDPA, EPR measurements at different positions of the magnet with respect to the VCO array were performed. It was possible to create a 2D spatial map of a 1.5 mm x 5 mm region of the magnetic field with 50 mu m resolution. This allowed for the determination of the magnetic field intensity and homogeneity, which are found to be 254.69 mT and 700 ppm, respectively. The magnetic field was mapped also along the vertical direction using a thin film a-Si layer. The EPRoC and permanent magnet were combined to form a miniaturized EPR spectrometer to perform experiments on tempol (4-hydroxy-2,2,6,6-teramethylpiperidin-1-oxyl) dissolved in an 80% glycerol and 20% water solution. It was possible to determine the molecular tumbling correlation time and to establish a calibration procedure to quantify the number of spins within the sample.
引用
收藏
页码:5099 / 5108
页数:10
相关论文
共 50 条
  • [21] Raising the sensitivity of the electron-paramagnetic-resonance spectrometer using a ferroelectric resonator
    I. N. Geifman
    I. S. Golovina
    E. R. Zusmanov
    V. I. Kofman
    Technical Physics, 2000, 45 : 263 - 266
  • [22] General purpose multiquantum electron paramagnetic resonance spectrometer
    Strangeway, Robert A.
    Mchaourab, Hassane S.
    Luglio, Juan R.
    Froncisz, W.
    Hyde, James S.
    Review of Scientific Instruments, 1995, 66 (09):
  • [23] ELECTRON PARAMAGNETIC RESONANCE SPECTROMETER ATTACHED TO NUCLEAR REACTOR
    GALLAND, D
    SANTIER, C
    SERVOZGA.P
    SOUTIF, M
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1969, 66 (05) : 801 - &
  • [24] MAGNET CURRENT STABILIZER FOR AN ELECTRON SPIN RESONANCE SPECTROMETER
    ABRAHAM, RJ
    OVENALL, DW
    WHIFFEN, DH
    JOURNAL OF SCIENTIFIC INSTRUMENTS, 1957, 34 (07): : 269 - 270
  • [25] Electron paramagnetic resonance spectroscopy using a single artificial atom
    Toida, Hiraku
    Matsuzaki, Yuichiro
    Kakuyanagi, Kosuke
    Zhu, Xiaobo
    Munro, William J.
    Yamaguchi, Hiroshi
    Saito, Shiro
    COMMUNICATIONS PHYSICS, 2019, 2
  • [26] Electron paramagnetic resonance spectroscopy using a single artificial atom
    Hiraku Toida
    Yuichiro Matsuzaki
    Kosuke Kakuyanagi
    Xiaobo Zhu
    William J. Munro
    Hiroshi Yamaguchi
    Shiro Saito
    Communications Physics, 2
  • [27] A Miniaturized On-Chip Electron Paramagnetic Resonance Sensor
    Hole, Amit P.
    Pulijala, Vasu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (12) : 6407 - 6414
  • [28] FIELD STABILIZER FOR PERMANENT MAGNET OF NUCLEAR MAGNETIC RESONANCE SPECTROMETER.
    Ivanov, G.C.
    Vainshtein, D.I.
    Safin, V.A.
    Shchepkin, V.D.
    Instruments and experimental techniques New York, 1982, 25 (4 pt 2): : 967 - 968
  • [29] COMPACT ELECTRON-CYCLOTRON RESONANCE PLASMA-ETCHING REACTOR EMPLOYING PERMANENT-MAGNET
    NARAI, A
    HASHIMOTO, T
    ICHIHASHI, H
    SHINDO, H
    HORIIKE, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1991, 30 (11B): : 3159 - 3163
  • [30] SPECTROMETER FOR INVESTIGATING ELECTRON PARAMAGNETIC RESONANCE IN SOLIDS AT LOW TEMPERATURES
    BUGAI, AA
    RUBAN, MA
    INDUSTRIAL LABORATORY, 1963, 29 (11): : 1532 - 1535