Compact Electron Paramagnetic Resonance on a Chip Spectrometer Using a Single Sided Permanent Magnet

被引:0
|
作者
Segantini, Michele [1 ]
Marcozzi, Gianluca [1 ]
Elrifai, Tarek [2 ]
Shabratova, Ekaterina [1 ,3 ]
Höflich, Katja [3 ]
Deaconeasa, Mihaela [4 ]
Niemann, Volker [4 ]
Pietig, Rainer [4 ]
McPeak, Joseph E. [1 ]
Anders, Jens [2 ,5 ]
Naydenov, Boris [1 ]
Lips, Klaus [1 ,6 ]
机构
[1] Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin,14109, Germany
[2] Institute of Smart Sensors, Universität Stuttgart, Stuttgart,70569, Germany
[3] Leibniz-Institut für Höchstfrequenztechnik, Ferdinand-Braun-Institut GGmbH, Berlin,12489, Germany
[4] Bruker BioSpin GmbH, Ettlingen,76275, Germany
[5] Center for Integrated Quantum Science and Technology, Stuttgart and Ulm,70569, Germany
[6] Berlin Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, Berlin,14195, Germany
关键词
Accelerator magnets - Atomic emission spectroscopy - Electron resonance - Electron spin resonance spectroscopy - Enameling - Paramagnetic materials - Paramagnetic resonance - Paramagnetism - Photodissociation - Vacuum deposition;
D O I
10.1021/acssensors.4c00788
中图分类号
学科分类号
摘要
Electron paramagnetic resonance (EPR) spectroscopy provides information about the physical and chemical properties of materials by detecting paramagnetic states. Conventional EPR measurements are performed in high Q resonator using large electromagnets which limits the available space for operando experiments. Here we present a solution toward a portable EPR sensor based on the combination of the EPR-on-a-Chip (EPRoC) and a single-sided permanent magnet. This device can be placed directly into the sample environment (i.e., catalytic reaction vessels, ultrahigh vacuum deposition chambers, aqueous environments, etc.) to conduct in situ and operando measurements. The EPRoC reported herein is comprised of an array of 14 voltage-controlled oscillator (VCO) coils oscillating at 7 GHz. By using a single grain of crystalline BDPA, EPR measurements at different positions of the magnet with respect to the VCO array were performed. It was possible to create a 2D spatial map of a 1.5 mm × 5 mm region of the magnetic field with 50 μm resolution. This allowed for the determination of the magnetic field intensity and homogeneity, which are found to be 254.69 mT and 700 ppm, respectively. The magnetic field was mapped also along the vertical direction using a thin film a-Si layer. The EPRoC and permanent magnet were combined to form a miniaturized EPR spectrometer to perform experiments on tempol (4-hydroxy-2,2,6,6-teramethylpiperidin-1-oxyl) dissolved in an 80% glycerol and 20% water solution. It was possible to determine the molecular tumbling correlation time and to establish a calibration procedure to quantify the number of spins within the sample. © 2024 The Authors. Published by American Chemical Society.
引用
收藏
页码:5099 / 5108
相关论文
共 50 条
  • [1] Magnetic resonance elastometry using a single-sided permanent magnet
    Tan, Carl S.
    Marble, Andrew E.
    Ono, Yuu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (04)
  • [2] A thin emulsion spectrometer using a compact permanent magnet
    Fukushima, C.
    Kimura, M.
    Ogawa, S.
    Shibuya, H.
    Takahashi, G.
    Kodama, K.
    Hara, T.
    Mikado, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 592 (1-2): : 56 - 62
  • [3] A COMPACT PERMANENT-MAGNET PROTON SPECTROMETER
    OBST, AW
    KING, NSP
    HANCOCK, AD
    HILKO, RA
    KLINGLER, QG
    BOYER, KG
    ENGE, HA
    KOWALSKI, S
    HOLSINGER, RF
    LOWN, RR
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1988, 263 (2-3): : 407 - 413
  • [4] COMPACT PERMANENT MAGNET PROTON SPECTROMETER.
    Obst, Andrew W.
    King, Nicholas S.P.
    Hancock, Arthur D.
    Hilko, Robert A.
    Klingler, Quentin G.
    Boyer, Kenneth G.
    Enge, Harald A.
    Kowalski, Stanley
    Holsinger, Ronald F.
    Lown, Robert R.
    Nuclear instruments and methods in physics research, 1988, A263 (2-3): : 407 - 413
  • [5] MICRA: a compact permanent magnet Fourier transform ion cyclotron resonance mass spectrometer
    Mauclaire, G
    Lemaire, J
    Boissel, P
    Bellec, G
    Heninger, M
    EUROPEAN JOURNAL OF MASS SPECTROMETRY, 2004, 10 (02) : 155 - 162
  • [6] A PERMANENT MAGNET FOR A NUCLEAR MAGNETIC RESONANCE SPECTROMETER
    BOLTEZAR, E
    PETRINOV.M
    SEDLACEK, M
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1968, 1 (03): : 323 - &
  • [7] PULSED ELECTRON PARAMAGNETIC RESONANCE SPECTROMETER
    BROWN, IM
    SLOOP, DJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1970, 41 (12): : 1774 - &
  • [8] ELECTRON-PARAMAGNETIC RESONANCE SPECTROMETER
    BELONOGOV, AM
    VOLNYAGIN, DP
    DRAPKIN, VZ
    ZAYATS, VV
    OVCHAROV, VV
    PASHINSKII, VA
    SERDYUK, AS
    UGOLEV, II
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1978, 21 (01) : 261 - 261
  • [9] Miniature nuclear magnetic resonance spectrometer using a partially enclosed permanent magnet
    Lu, Rongsheng
    Zhou, Xinlong
    Yin, Qifeng
    Hu, Jianxiong
    Ni, Zhonghua
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2017, 45 (03) : 324 - 337
  • [10] COMPACT ELECTRON-CYCLOTRON-RESONANCE ION-SOURCE WITH A PERMANENT-MAGNET
    SHIMADA, M
    TORII, Y
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1993, 11 (04): : 1313 - 1316