Infrared quantum ghost imaging of living and undisturbed plants

被引:0
|
作者
Ryan, Duncan P. [1 ]
Meier, Kristina [2 ]
Seitz, Kati [1 ,3 ]
Hanson, David [3 ]
Morales, Demosthenes [1 ]
Palmer, David M. [2 ]
Hanson, Buck [2 ]
Goodwin, Peter M. [4 ]
Newell, Raymond [2 ]
Holmes, Rebecca M. [2 ]
Thompson, David [2 ]
Werner, James [1 ]
机构
[1] Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[2] Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[3] University of New Mexico, Albuquerque,NM,87131, United States
[4] University of South Florida, Tampa,FL,33620, United States
来源
Optica | 2024年 / 11卷 / 09期
关键词
Bioimaging - Infrared imaging - Infrared transmission - Phantoms - Quantum optics;
D O I
10.1364/OPTICA.527982
中图分类号
学科分类号
摘要
Quantum ghost imaging (QGI) is a method that measures absorption at extremely low light intensities. Nondegenerate QGI probes a sample at one wavelength while forming an image with correlated photons at a different wavelength. This spectral separation alleviates the need for imaging detectors with high sensitivity in the near-infrared (NIR) region, thereby reducing the required illumination intensity. Using NCam, a single-photon detector, we demonstrated nondegenerate QGI with unprecedented sensitivity and contrast, obtaining images of living plants with less than 1% light transmission. The plants experienced 3 aW/cm2 of light during imaging, orders of magnitude below starlight. This realization of QGI expands the method to extremely low-light bioimaging and imaging of light-sensitive samples, where minimizing illumination intensity is crucial to prevent phototoxicity or sample degradation. © 2024 Optica Publishing Group.
引用
收藏
页码:1261 / 1267
相关论文
共 50 条
  • [41] Frequency downconversion and ghost imaging: Classical and quantum approaches
    Puddu, E.
    Bondani, M.
    Degiovanni, I. P.
    Andreoni, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 160 (1): : 361 - 369
  • [42] Practical advantage of quantum machine learning in ghost imaging
    Tailong Xiao
    Xinliang Zhai
    Xiaoyan Wu
    Jianping Fan
    Guihua Zeng
    Communications Physics, 6
  • [43] All-digital quantum ghost imaging: tutorial
    Moodley, Chane
    Forbes, Andrew
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (12) : 3073 - 3095
  • [44] QUANTUM MIRRORS AND CROSSING SYMMETRY AS HEART OF GHOST IMAGING
    Ion, D. B.
    Ion, M. L.
    Rusu, L.
    ROMANIAN REPORTS IN PHYSICS, 2009, 61 (03) : 609 - 623
  • [45] Frequency downconversion and ghost imaging: Classical and quantum approaches
    E. Puddu
    M. Bondani
    I. P. Degiovanni
    A. Andreoni
    The European Physical Journal Special Topics, 2008, 160 : 361 - 369
  • [46] Infrared guidance on quantum imaging
    Cao, Xinping
    Lan, Jie
    Cheng, Xie
    Zhu, Beibei
    Yuan, Hang
    Lu, Bo
    INTERNATIONAL SYMPOSIUM ON OPTOELECTRONIC TECHNOLOGY AND APPLICATION 2014: INFRARED TECHNOLOGY AND APPLICATIONS, 2014, 9300
  • [47] A Visible and Infrared Image Fusion Method Based on Ghost Imaging
    Ye, Hualong
    JOURNAL OF RUSSIAN LASER RESEARCH, 2023, 44 (06) : 637 - 645
  • [48] A Visible and Infrared Image Fusion Method Based on Ghost Imaging
    Ye Hualong
    Journal of Russian Laser Research, 2023, 44 (6) : 637 - 645
  • [49] Imaging quantum dots in living cells and living animals
    Smith, Andrew M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [50] Higher-Order Quantum Ghost Imaging with Ultracold Atoms
    Hodgman, S. S.
    Bu, W.
    Mann, S. B.
    Khakimov, R., I
    Truscott, A. G.
    PHYSICAL REVIEW LETTERS, 2019, 122 (23)