Infrared quantum ghost imaging of living and undisturbed plants

被引:0
|
作者
Ryan, Duncan P. [1 ]
Meier, Kristina [2 ]
Seitz, Kati [1 ,3 ]
Hanson, David [3 ]
Morales, Demosthenes [1 ]
Palmer, David M. [2 ]
Hanson, Buck [2 ]
Goodwin, Peter M. [4 ]
Newell, Raymond [2 ]
Holmes, Rebecca M. [2 ]
Thompson, David [2 ]
Werner, James [1 ]
机构
[1] Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[2] Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[3] University of New Mexico, Albuquerque,NM,87131, United States
[4] University of South Florida, Tampa,FL,33620, United States
来源
Optica | 2024年 / 11卷 / 09期
关键词
Bioimaging - Infrared imaging - Infrared transmission - Phantoms - Quantum optics;
D O I
10.1364/OPTICA.527982
中图分类号
学科分类号
摘要
Quantum ghost imaging (QGI) is a method that measures absorption at extremely low light intensities. Nondegenerate QGI probes a sample at one wavelength while forming an image with correlated photons at a different wavelength. This spectral separation alleviates the need for imaging detectors with high sensitivity in the near-infrared (NIR) region, thereby reducing the required illumination intensity. Using NCam, a single-photon detector, we demonstrated nondegenerate QGI with unprecedented sensitivity and contrast, obtaining images of living plants with less than 1% light transmission. The plants experienced 3 aW/cm2 of light during imaging, orders of magnitude below starlight. This realization of QGI expands the method to extremely low-light bioimaging and imaging of light-sensitive samples, where minimizing illumination intensity is crucial to prevent phototoxicity or sample degradation. © 2024 Optica Publishing Group.
引用
收藏
页码:1261 / 1267
相关论文
共 50 条
  • [21] Ghost imaging: from quantum to classical to computational
    Shapiro, Jeffrey H.
    Erkmen, Baris I.
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC), 2009, 1110 : 417 - 422
  • [22] Super-resolved quantum ghost imaging
    Moodley, Chane
    Forbes, Andrew
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Quantum ghost imaging using asynchronous detection
    Pitsch, Carsten
    Walter, Dominik
    Grosse, Simon
    Brockherde, Werner
    Buersing, Helge
    Eichhorn, Marc
    APPLIED OPTICS, 2021, 60 (22) : F66 - F70
  • [24] Temporal ghost imaging for quantum device evaluation
    Wu, Juan
    Wang, Fang-Xiang
    Chen, Wei
    Wang, Shuang
    He, De-Yong
    Yin, Zhen-Qiang
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICS LETTERS, 2019, 44 (10) : 2522 - 2525
  • [25] Mapping photocathode quantum efficiency with ghost imaging
    Kabra, K.
    Li, S.
    Cropp, F.
    Lane, Thomas J.
    Musumeci, P.
    Ratner, D.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (02):
  • [26] Super-resolved quantum ghost imaging
    Chané Moodley
    Andrew Forbes
    Scientific Reports, 12
  • [27] Quantum face recognition protocol with ghost imaging
    Salari, Vahid
    Paneru, Dilip
    Saglamyurek, Erhan
    Ghadimi, Milad
    Abdar, Moloud
    Rezaee, Mohammadreza
    Aslani, Mehdi
    Barzanjeh, Shabir
    Karimi, Ebrahim
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [28] Turbulence Measurement and Characterization for Quantum Ghost Imaging
    Meyers, Ronald E.
    Deacon, Keith
    Tunick, Arnold
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING IX, 2011, 8163
  • [29] Quantum face recognition protocol with ghost imaging
    Vahid Salari
    Dilip Paneru
    Erhan Saglamyurek
    Milad Ghadimi
    Moloud Abdar
    Mohammadreza Rezaee
    Mehdi Aslani
    Shabir Barzanjeh
    Ebrahim Karimi
    Scientific Reports, 13 (1)
  • [30] Quantum ghost imaging with improved diffraction limit
    Dmitriy A. Balakin
    Alexander V. Belinsky
    Quantum Information Processing, 21