Role of grain boundary and nanoholes in geometrical deformation and bonding energies of graphene/hexagonal boron nitride

被引:0
|
作者
Fan, Lei [1 ]
Bian, Zuguang [1 ]
Huang, Zhuye [1 ]
Xia, Yongqiang [1 ]
Song, Fangyuan [1 ]
Xu, Jin [1 ]
机构
[1] School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, China
关键词
Boron nitride - Geometry - III-V semiconductors - Deformation - Grain boundaries - Stresses - Elastic moduli - Graphene - Strain rate;
D O I
暂无
中图分类号
学科分类号
摘要
The geometric deformation, bonding energies and mechanical properties of graphene-h-BN heterostructures (Gr-h-BN) under the coupling of external field (strain rate and temperature) and internal field (grain boundary (GBs) and nanoholes) were studied by using molecular dynamics and nonlinear mechanics. The results show that GBs and nanoholes will cause the Gr-BN-GBs configuration to deviate from the plane configuration, and produce a saddle shape with positive curvature and negative curvature, and its displacement field diverges with distance. In addition, the presence of GBs and nanoholes leads to a reduction in failure stress, Young's modulus and Von-mises stress. However, the presence of GBs and nanoholes also improves the bending rigidities of two dimensional (2D) materials. The adverse and strengthening effects induced by GBs and nanoholes are strongly dependent on temperature and strain rate. A full study of the built-in distorted stress field generated by the interaction of defects in 2D materials will help us to understand the physical mechanism of the relationship between structure and properties in low dimensions, and even design new applications. © 2022
引用
收藏
相关论文
共 50 条
  • [31] Graphene, hexagonal boron nitride, and their heterostructures: properties and applications
    Wang, Jingang
    Ma, Fengcai
    Sun, Mengtao
    RSC ADVANCES, 2017, 7 (27) : 16801 - 16822
  • [32] Coating performance of hexagonal boron nitride and graphene layers
    Li, Xuemei
    Long, Yuyang
    Ma, Limin
    Li, Jidong
    Yin, Jun
    Guo, Wanlin
    2D MATERIALS, 2021, 8 (03):
  • [33] Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride
    Chen Ling-Xiu
    Wang Hui-Shan
    Jiang Cheng-Xin
    Chen Chen
    Wang Hao-Min
    ACTA PHYSICA SINICA, 2019, 68 (16)
  • [34] Thermal conductance of graphene/hexagonal boron nitride heterostructures
    Lu, Simon
    McGaughey, Alan J. H.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (11)
  • [35] Electronic structure of graphene nanoribbons on hexagonal boron nitride
    Gani, Yohanes S.
    Abergel, D. S. L.
    Rossi, Enrico
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [36] Etched graphene quantum dots on hexagonal boron nitride
    Engels, S.
    Epping, A.
    Volk, C.
    Korte, S.
    Voigtlaender, B.
    Watanabe, K.
    Taniguchi, T.
    Trellenkamp, S.
    Stampfer, C.
    APPLIED PHYSICS LETTERS, 2013, 103 (07)
  • [37] Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
    Dai, S.
    Ma, Q.
    Liu, M. K.
    Andersen, T.
    Fei, Z.
    Goldflam, M. D.
    Wagner, M.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Keilmann, F.
    Janssen, G. C. A. M.
    Zhu, S-E.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    NATURE NANOTECHNOLOGY, 2015, 10 (08) : 682 - 686
  • [38] Electrically dependent bandgaps in graphene on hexagonal boron nitride
    Kaplan, D.
    Recine, G.
    Swaminathan, V.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [39] Origin of band gaps in graphene on hexagonal boron nitride
    Jeil Jung
    Ashley M. DaSilva
    Allan H. MacDonald
    Shaffique Adam
    Nature Communications, 6
  • [40] Effective Cleaning of Hexagonal Boron Nitride for Graphene Devices
    Garcia, Andrei G. F.
    Neumann, Michael
    Amet, Francois
    Williams, James R.
    Watanabe, Kenji
    Taniguchi, Takashi
    Goldhaber-Gordon, David
    NANO LETTERS, 2012, 12 (09) : 4449 - 4454