Role of grain boundary and nanoholes in geometrical deformation and bonding energies of graphene/hexagonal boron nitride

被引:0
|
作者
Fan, Lei [1 ]
Bian, Zuguang [1 ]
Huang, Zhuye [1 ]
Xia, Yongqiang [1 ]
Song, Fangyuan [1 ]
Xu, Jin [1 ]
机构
[1] School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, China
关键词
Boron nitride - Geometry - III-V semiconductors - Deformation - Grain boundaries - Stresses - Elastic moduli - Graphene - Strain rate;
D O I
暂无
中图分类号
学科分类号
摘要
The geometric deformation, bonding energies and mechanical properties of graphene-h-BN heterostructures (Gr-h-BN) under the coupling of external field (strain rate and temperature) and internal field (grain boundary (GBs) and nanoholes) were studied by using molecular dynamics and nonlinear mechanics. The results show that GBs and nanoholes will cause the Gr-BN-GBs configuration to deviate from the plane configuration, and produce a saddle shape with positive curvature and negative curvature, and its displacement field diverges with distance. In addition, the presence of GBs and nanoholes leads to a reduction in failure stress, Young's modulus and Von-mises stress. However, the presence of GBs and nanoholes also improves the bending rigidities of two dimensional (2D) materials. The adverse and strengthening effects induced by GBs and nanoholes are strongly dependent on temperature and strain rate. A full study of the built-in distorted stress field generated by the interaction of defects in 2D materials will help us to understand the physical mechanism of the relationship between structure and properties in low dimensions, and even design new applications. © 2022
引用
收藏
相关论文
共 50 条
  • [21] Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride (vol 10, pg 3497, 2018)
    Li, Yinfeng
    Wei, Anran
    Ye, Han
    Yao, Haimin
    NANOSCALE, 2018, 10 (10) : 4969 - 4969
  • [22] Mono layer graphene/hexagonal boron nitride heterostructure
    Jain, Nikhil
    Bansal, Tanesh
    Durcan, Christopher A.
    Xu, Yang
    Yu, Bin
    CARBON, 2013, 54 : 396 - 402
  • [23] Influence of Hexagonal Boron Nitride on Electronic Structure of Graphene
    Liu, Jingran
    Luo, Chaobo
    Lu, Haolin
    Huang, Zhongkai
    Long, Guankui
    Peng, Xiangyang
    MOLECULES, 2022, 27 (12):
  • [24] Electrolyte adsorption in graphene and hexagonal boron nitride nanochannels
    Anousheh, Nasim
    Shamloo, Azar
    Jalili, Seifollah
    Tuszynski, Jack A.
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 367
  • [25] Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
    Dai S.
    Ma Q.
    Liu M.K.
    Andersen T.
    Fei Z.
    Goldflam M.D.
    Wagner M.
    Watanabe K.
    Taniguchi T.
    Thiemens M.
    Keilmann F.
    Janssen G.C.A.M.
    Zhu S.-E.
    Jarillo-Herrero P.
    Fogler M.M.
    Basov D.N.
    Nature Nanotechnology, 2015, 10 (8) : 682 - 686
  • [26] Band gaps in incommensurable graphene on hexagonal boron nitride
    Bokdam, Menno
    Amlaki, Taher
    Brocks, Geert
    Kelly, Paul J.
    PHYSICAL REVIEW B, 2014, 89 (20):
  • [27] Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene
    Wong, Sheng-Shong
    Lin, Zhen-You
    Ho, Sheng-Zhu
    Hsu, Chih-En
    Li, Ping-Hung
    Chen, Ching-Yu
    Huang, Yen-Fu
    Chang, Kuo-En
    Hsieh, Yu-Chiang
    Chen, Chia-Hao
    Lee, Ming-Hao
    Chu, Ming-Wen
    Lin, Kuang-, I
    Chen, Tse-Ming
    Chen, Yi-Chun
    Hsueh, Hung-Chung
    Cheng, Cheng-Maw
    Wu, Chung-Lin
    ADVANCED MATERIALS, 2025,
  • [28] Li intercalation at graphene/hexagonal boron nitride interfaces
    Shirodkar, Sharmila N.
    Kaxiras, Efthimios
    PHYSICAL REVIEW B, 2016, 93 (24)
  • [29] Anomalous paramagnetism in graphene on hexagonal boron nitride substrates
    Ding, Xuli
    Sun, Hong
    Xie, Xiaoming
    Ren, Haicang
    Huang, Fuqiang
    Jiang, Mianheng
    PHYSICAL REVIEW B, 2011, 84 (17)
  • [30] Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride
    DaSilva, Ashley M.
    Jung, Jeil
    MacDonald, Allan H.
    PHYSICAL REVIEW LETTERS, 2016, 117 (03)