Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1, 2) with sectorial operators

被引:0
|
作者
Mohan Raja, M. [1 ]
Vijayakumar, V. [1 ]
机构
[1] Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Tamil Nadu, Vellore,632 014, India
来源
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Differential equations - Calculations - Differentiation (calculus) - Fixed point arithmetic - Functional analysis - Topology
引用
下载
收藏
相关论文
共 50 条
  • [1] Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ? (1,2) with sectorial operators
    Raja, M. Mohan
    Vijayakumar, V.
    CHAOS SOLITONS & FRACTALS, 2022, 159
  • [2] Optimal control results for Sobolev-type fractional mixed Volterra-Fredholm type integrodifferential equations of order 1 < r < 2 with sectorial operators
    Raja, Marimuthu Mohan
    Vijayakumar, Velusamy
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (05): : 1314 - 1327
  • [3] A note on the existence and optimal control for mixed Volterra-Fredholm-type integrodifferential dispersion system of third order
    Patel, Rohit
    Vijayakumar, V.
    Nieto, Juan J.
    Jadon, Shimpi Singh
    Shukla, Anurag
    ASIAN JOURNAL OF CONTROL, 2023, 25 (03) : 2113 - 2121
  • [4] Existence and optimal control results for Caputo fractional delay Clark's subdifferential inclusions of order r∈(1,2) with sectorial operators
    Raja, Marimuthu Mohan
    Vijayakumar, Velusamy
    Veluvolu, Kalyana Chakravarthy
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (04): : 1832 - 1850
  • [5] Optimal Control Results for Sobolev-Type Fractional Stochastic Volterra-Fredholm Integrodifferential Systems of Order V?(1,2) via Sectorial Operators
    Johnson, M.
    Vijayakumar, V.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (06) : 439 - 460
  • [6] Existence of solution for Volterra-Fredholm type stochastic fractional integro-differential system of order μ ∈ (1,2) with sectorial operators
    Kaliraj, K.
    Muthuvel, K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (12) : 13142 - 13154
  • [7] On the approximate controllability results for fractional integrodifferential systems of order 1 &lt; r &lt; 2 with sectorial operators
    Raja, M. Mohan
    Vijayakumar, V.
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    Baskonus, Haci Mehmet
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 415
  • [8] A Note on the Existence and Controllability Results for Fractional Integrodifferential Inclusions of Order r ∈ (1,2] with Impulses
    Raja, M. Mohan
    Shukla, Anurag
    Nieto, Juan J.
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [9] Approximate controllability results for the Sobolev type fractional delay impulsive integrodifferential inclusions of order r ? (1,2) via sectorial operator
    Raja, M. Mohan
    Vijayakumar, V.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1740 - 1769
  • [10] Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces
    Chang, Y. -K.
    Chalishajar, D. N.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (05): : 499 - 507