Physics-Informed Neural Networks for Magnetostatic Problems on Axisymmetric Transformer Geometries

被引:0
|
作者
Brendel, Philipp [1 ]
Medvedev, Vlad [1 ]
Rosskopf, Andreas [1 ]
机构
[1] Fraunhofer Institute for Integrated Systems and Device Technology Iisb, Erlangen,91058, Germany
关键词
Electric potential - Geometry - Magnetic domains - Magnetostatics - Power electronics;
D O I
10.1109/JESTIE.2023.3346798
中图分类号
学科分类号
摘要
引用
收藏
页码:700 / 709
相关论文
共 50 条
  • [1] Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems
    Beltran-Pulido, Andres
    Bilionis, Ilias
    Aliprantis, Dionysios
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (04) : 2678 - 2689
  • [2] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [3] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [4] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    [J]. MATERIALS & DESIGN, 2023, 236
  • [5] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [6] Physics-Informed Neural Networks for Quantum Eigenvalue Problems
    Jin, Henry
    Mattheakis, Marios
    Protopapas, Pavlos
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    [J]. TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [8] Physics-Informed Neural Networks for Solving 2-D Magnetostatic Fields
    Gong, Zhi
    Chu, Yang
    Yang, Shiyou
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (11)
  • [9] Physics-Informed Neural Networks for prediction of transformer's temperature distribution
    Odeback, Oliver Welin
    Bragone, Federica
    Laneryd, Tor
    Luvisotto, Michele
    Morozovska, Kateryna
    [J]. 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1579 - 1586
  • [10] Predicting transformer temperature field based on physics-informed neural networks
    Tang, Pengfei
    Zhang, Zhonghao
    Tong, Jie
    Long, Tianhang
    Huang, Can
    Qi, Zihao
    [J]. HIGH VOLTAGE, 2024, 9 (04) : 839 - 852