State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR

被引:0
|
作者
Guo, Yongfang [1 ]
Huang, Kai [2 ,3 ]
Yu, Xiangyuan [1 ]
Wang, Yashuang [1 ]
机构
[1] School of Artificial Intelligence, Hebei University of Technology, Tianjin,300130, China
[2] State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin,300130, China
[3] Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin,300130, China
关键词
Battery management systems - Charging (batteries) - Data handling - Health - Ions;
D O I
暂无
中图分类号
学科分类号
摘要
Accurate estimation of State-of-Health (SOH) is very important for the safe and reliable operation of lithium-ion batteries. Considering that the historical dependency of charging data could reflect the internal electrochemical reaction of the battery, a new SOH estimation method is proposed. Firstly, a data pre-processing method is developed to resample the voltage data of the constant current charging stage with a predefined fixed number of samples. It can suppress the measurement noise and facilitate calculating the difference of voltage curves under different aging levels. Secondly, a new health indicator (HI) is proposed. It includes two types of features, one is accumulated voltage of different intervals and the other is charging capacity, they are used to reflect the non-linear changes of the charging voltage and changes of the charging time with the battery aging respectively. In addition, considering the cell inconsistency, an Ensemble Support Vector Regression (ESVR) model is put forward to establish the relationship between HI and battery SOH. Finally, two kinds of open-source battery data are tested and the results show that the method developed in the paper could get high-precision SOH estimation results and the HI is robust to the battery type and cell inconsistency. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] A charging-feature-based estimation model for state of health of lithium-ion batteries
    Cai, Li
    Lin, Jingdong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [42] State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries
    Tian, Jinpeng
    Xiong, Rui
    Shen, Weixiang
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (10) : 10363 - 10373
  • [43] State of health estimation of lithium-ion batteries based on the constant voltage charging curve
    Wang, Zengkai
    Zeng, Shengkui
    Guo, Jianbin
    Qin, Taichun
    ENERGY, 2019, 167 : 661 - 669
  • [44] State-of-Health Estimation of Lithium-ion Batteries Based on WOA-CNN-LSTM-Attention
    Li, Zhiwei
    Li, Yong
    Liao, Chenglin
    Zhang, Chengzhong
    Wang, Liye
    Wang, Lifang
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 572 - 578
  • [45] SOC estimation of lithium-ion batteries for electric vehicles based on multimode ensemble SVR
    Huixin Tian
    Ang Li
    Xiaoyu Li
    Journal of Power Electronics, 2021, 21 : 1365 - 1373
  • [46] SOC estimation of lithium-ion batteries for electric vehicles based on multimode ensemble SVR
    Tian, Huixin
    Li, Ang
    Li, Xiaoyu
    JOURNAL OF POWER ELECTRONICS, 2021, 21 (09) : 1365 - 1373
  • [47] A reliable data-driven state-of-health estimation model for lithium-ion batteries in electric vehicles
    Zhang, Chaolong
    Zhao, Shaishai
    Yang, Zhong
    Chen, Yuan
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [48] State of Health Estimation of Lithium-Ion Batteries from Charging Data: A Machine Learning Method
    Wang, Zuolu
    Feng, Guojin
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew D.
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 707 - 719
  • [49] Online state-of-health prediction of lithium-ion batteries with limited labeled data
    Yu, Jinsong
    Yang, Jie
    Wu, Yao
    Tang, Diyin
    Dai, Jing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11345 - 11353
  • [50] State-of-Health Estimation of Lithium-ion Batteries Based on Singular Value Decomposition and an Improved Group Method of Data Handling
    Li, Junhong
    Bai, Guixiang
    Yan, Jun
    Hua, Liang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (01)