A reliable data-driven state-of-health estimation model for lithium-ion batteries in electric vehicles

被引:69
|
作者
Zhang, Chaolong [1 ,2 ]
Zhao, Shaishai [2 ]
Yang, Zhong [1 ]
Chen, Yuan [3 ]
机构
[1] Jinling Inst Technol, Coll Intelligent Sci & Control Engn, Nanjing, Peoples R China
[2] Anqing Normal Univ, Sch Elect Engn & Intelligent Mfg, Anqing, Peoples R China
[3] Anhui Univ, Coll Artificial Intelligence, Hefei, Peoples R China
关键词
lithium-ion battery; SOH estimation; ICA; smoothing spline filter; PSO algorithm; BLS network; OPEN-CIRCUIT VOLTAGE; INTERNAL RESISTANCE; FAULT-DIAGNOSIS; NEURAL-NETWORK; CHARGE; CAPACITY; SYSTEM;
D O I
10.3389/fenrg.2022.1013800
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The implementation of a precise and low-computational state-of-health (SOH) estimation algorithm for lithium-ion batteries represents a critical challenge in the practical application of electric vehicles (EVs). The complicated physicochemical property and the forceful dynamic nonlinearity of the degradation mechanism require data-driven methods to substitute mechanistic modeling approaches to evaluate the lithium-ion battery SOH. In this study, an incremental capacity analysis (ICA) and improved broad learning system (BLS) network-based SOH estimation technology for lithium-ion batteries are developed. First, the IC curves are drawn based on the voltage data of the constant current charging phase and denoised by the smoothing spline filter. Then, the Pearson correlation coefficient method is used to select the critical health indicators from the features extracted from the IC curves. Finally, the lithium-ion battery SOH is assessed by the SOH estimation model established by an optimized BLS network, where the BLS network is formed through its L2 regularization parameter and the enhancement nodes' shrinkage scale filtrated by a particle swarm optimization algorithm. The experimental results demonstrate that the proposed method can effectively evaluate the SOH with strong robustness as well as stability to the degradation and disturbance of in-service and retired lithium-ion batteries.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A model-based and data-driven joint method for state-of-health estimation of lithium-ion battery in electric vehicles
    Lyu, Zhiqiang
    Gao, Renjing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (14) : 7956 - 7969
  • [2] Analysis of State-of-Health Estimation Approaches and Constraints for Lithium-Ion Batteries in Electric Vehicles
    Vaghela, Rohan
    Ramani, Pooja
    Sarda, Jigar
    Hui, Kueh Lee
    Sain, Mangal
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [3] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [4] A Data-Driven State-of-Health Estimation Model for Lithium-Ion Batteries Using Referenced-Based Charging Time
    Kheirkhah-Rad, Ehsan
    Parvareh, Amirreza
    Moeini-Aghtaie, Moein
    Dehghanian, Payman
    IEEE TRANSACTIONS ON POWER DELIVERY, 2023, 38 (05) : 3406 - 3416
  • [5] A Comprehensive Review on Data-Driven Methods of Lithium-Ion Batteries State-of-Health Forecasting
    Pham, Thien
    Bui, Hung
    Nguyen, Mao
    Pham, Quang
    Vu, Vinh
    Le, Triet
    Quan, Tho
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 15 (02)
  • [6] A Practical Data-Driven Battery State-of-Health Estimation for Electric Vehicles
    Rahimian, Saeed Khaleghi
    Tang, Yifan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (02) : 1973 - 1982
  • [7] Data-driven state-of-health estimation for lithium-ion battery based on aging features
    Li, Xining
    Ju, Lingling
    Geng, Guangchao
    Jiang, Quanyuan
    ENERGY, 2023, 274
  • [8] An Ensemble Learning-Based Data-Driven Method for Online State-of-Health Estimation of Lithium-Ion Batteries
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (02): : 422 - 436
  • [9] A Data-Driven Fault Tracing of Lithium-Ion Batteries in Electric Vehicles
    Wang, Shuhui
    Wang, Zhenpo
    Pan, Jinquan
    Zhang, Zhaosheng
    Cheng, Ximing
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2024, 39 (12) : 16609 - 16621
  • [10] Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles
    Li, Wei
    Zhu, Juner
    Xia, Yong
    Gorji, Maysam B.
    Wierzbicki, Tomasz
    JOULE, 2019, 3 (11) : 2703 - 2715