Deepening into the charge storage mechanisms and electrochemical performance of TiO2 hollandite for sodium-ion batteries

被引:1
|
作者
Duarte-Cárdenas A. [1 ]
Díaz-Carrasco P. [1 ]
Kuhn A. [1 ]
Basa A. [2 ]
García-Alvarado F. [1 ]
机构
[1] Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid
[2] Faculty of Chemistry, University of Białystok, K. Ciolkowskiego 1K, Białystok
来源
Electrochimica Acta | 2022年 / 427卷
关键词
High-capacity anode; Hollandite TiO[!sub]2[!/sub; Sodium diffusion coefficient; Sodium ion battery; Sodium ion negative electrode;
D O I
10.1016/j.electacta.2022.140872
中图分类号
学科分类号
摘要
The electrochemical performance of TiO2 hollandite, TiO2(H), obtained by complete K+ ion extraction of the bronze K0.2TiO2 is investigated. TiO2 develops a fairly stable capacity of 106 mAh g–1 after 300 cycles at C/8 (42 mA g–1) and maintains 100 mAh g–1 after 600 cycles. At high current rate (2C, 671 mA g–1) 55 mAh g–1 is still maintained. Cycling produces nanosizing of the TiO2 electrode (to 200–300 nm) by electrochemical milling but cyclic voltammetry at different sweep rates indicates that diffusive controlled faradic contribution to the total capacity of TiO2(H) due to Na insertion is significant even at high current. However, participation of pseudocapacitive charge storage is unveiled. The voltage profile resembles in fact that of pseudocapacitive materials with no clear evidence of a constant voltage region. Operando XRD confirmed the lowering of symmetry from tetragonal I4/m to monoclinic I2/m upon sodiation with a relatively narrow two-phase region different from other long plateaus of typical battery materials. Cyclic voltammetry clearly indicates that the two peaks (centered at 1.25 and 0.5 V on reduction) correspond to diffusion-limited faradic processes. Thus, it can be said that hollandite TiO2 is a battery-like material, but for which kinetics is not limited by a biphasic transformation. Instead, kinetics is limited mainly by slow diffusion in single phases with variable composition (continuous variation of voltage vs. capacity) that are formed upon Na+ intercalation into the tunnels. The limited diffusion at high sweep rate favors the dominance of pseudocapacitance (charge transfer at the surface). A comparison with the bronze K0.2TiO2 reveals the importance of potassium in the electrochemical properties and the nature of the different physicochemical processes of both compounds. Sodium ion diffusion coefficient in TiO2(H), 2.6 · 10–13 cm2 s–1, is several orders of magnitude higher than that of TiO2 rutile and anatase, however it does not provide a fast intercalation into the tunnels to consider it a pseudocapacitive intercalation material. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [41] Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries
    Shadike, Zulipiya
    Cao, Ming-Hui
    Ding, Fei
    Sang, Lin
    Fu, Zheng-Wen
    CHEMICAL COMMUNICATIONS, 2015, 51 (52) : 10486 - 10489
  • [42] The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries
    Li, Wei
    Fukunishi, Mika
    Morgan, Benjamin J.
    Borkiewicz, Olaf. J.
    Pralong, Valerie
    Maignan, Antoine
    Groult, Henri
    Komaba, Shinichi
    Dambournet, Damien
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (05): : 1100 - 1106
  • [43] Glycol Derived Carbon- TiO2 as Low Cost and High Performance Anode Material for Sodium-Ion Batteries
    Hongwei Tao
    Min Zhou
    Kangli Wang
    Shijie Cheng
    Kai Jiang
    Scientific Reports, 7
  • [44] Preparation of Porous TiO2 from an Iso-Polyoxotitanate Cluster for Rechargeable Sodium-Ion Batteries with High Performance
    Zhang, Guanyun
    Chu, Chenxiao
    Yang, Jian
    Tung, Chen-Ho
    Wang, Yifeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (12): : 7025 - 7032
  • [45] Rutile TiO2 mesocrystals with tunable subunits as a long-term cycling performance anode for sodium-ion batteries
    Lan, Tongbin
    Wang, Tao
    Zhang, Weifeng
    Wu, Nae-Lih
    Wei, Mingdeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 699 : 455 - 462
  • [46] Glycol Derived Carbon- TiO2 as Low Cost and High Performance Anode Material for Sodium-Ion Batteries
    Tao, Hongwei
    Zhou, Min
    Wang, Kangli
    Cheng, Shijie
    Jiang, Kai
    SCIENTIFIC REPORTS, 2017, 7
  • [47] New Electrochemical Systems for Sodium-Ion Batteries
    Kulova, T. L.
    Gavrilin, I. M.
    Skundin, A. M.
    Kovtushenko, E. V.
    Kudryashova, Yu. O.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 98 (04) : 771 - 776
  • [48] Porous Carbon Induced Anatase TiO2 Nanodots/Carbon Composites for High-Performance Sodium-Ion Batteries
    Zou, Guoqiang
    Hou, Hongshuai
    Zhang, Yan
    Huang, Zhaodong
    Qiu, Xiaoqing
    Ji, Xiaobo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) : A3117 - A3125
  • [49] Green and Facile Preparation of Carbon-Coated TiO2 Nanosheets for High-Performance Sodium-Ion Batteries
    Luo, Zhigao
    Liu, Sainan
    Cai, Yangshen
    Li, Shi
    Pan, Anqiang
    Liang, Shuquan
    ENERGY TECHNOLOGY, 2018, 6 (04) : 759 - 765
  • [50] TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors
    Liu, Sainan
    Luo, Zhigao
    Tian, Gengyu
    Zhu, Mengnan
    Cai, Zhenyang
    Pan, Anqiang
    Liang, Shuquan
    JOURNAL OF POWER SOURCES, 2017, 363 : 284 - 290