Deepening into the charge storage mechanisms and electrochemical performance of TiO2 hollandite for sodium-ion batteries

被引:1
|
作者
Duarte-Cárdenas A. [1 ]
Díaz-Carrasco P. [1 ]
Kuhn A. [1 ]
Basa A. [2 ]
García-Alvarado F. [1 ]
机构
[1] Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid
[2] Faculty of Chemistry, University of Białystok, K. Ciolkowskiego 1K, Białystok
来源
Electrochimica Acta | 2022年 / 427卷
关键词
High-capacity anode; Hollandite TiO[!sub]2[!/sub; Sodium diffusion coefficient; Sodium ion battery; Sodium ion negative electrode;
D O I
10.1016/j.electacta.2022.140872
中图分类号
学科分类号
摘要
The electrochemical performance of TiO2 hollandite, TiO2(H), obtained by complete K+ ion extraction of the bronze K0.2TiO2 is investigated. TiO2 develops a fairly stable capacity of 106 mAh g–1 after 300 cycles at C/8 (42 mA g–1) and maintains 100 mAh g–1 after 600 cycles. At high current rate (2C, 671 mA g–1) 55 mAh g–1 is still maintained. Cycling produces nanosizing of the TiO2 electrode (to 200–300 nm) by electrochemical milling but cyclic voltammetry at different sweep rates indicates that diffusive controlled faradic contribution to the total capacity of TiO2(H) due to Na insertion is significant even at high current. However, participation of pseudocapacitive charge storage is unveiled. The voltage profile resembles in fact that of pseudocapacitive materials with no clear evidence of a constant voltage region. Operando XRD confirmed the lowering of symmetry from tetragonal I4/m to monoclinic I2/m upon sodiation with a relatively narrow two-phase region different from other long plateaus of typical battery materials. Cyclic voltammetry clearly indicates that the two peaks (centered at 1.25 and 0.5 V on reduction) correspond to diffusion-limited faradic processes. Thus, it can be said that hollandite TiO2 is a battery-like material, but for which kinetics is not limited by a biphasic transformation. Instead, kinetics is limited mainly by slow diffusion in single phases with variable composition (continuous variation of voltage vs. capacity) that are formed upon Na+ intercalation into the tunnels. The limited diffusion at high sweep rate favors the dominance of pseudocapacitance (charge transfer at the surface). A comparison with the bronze K0.2TiO2 reveals the importance of potassium in the electrochemical properties and the nature of the different physicochemical processes of both compounds. Sodium ion diffusion coefficient in TiO2(H), 2.6 · 10–13 cm2 s–1, is several orders of magnitude higher than that of TiO2 rutile and anatase, however it does not provide a fast intercalation into the tunnels to consider it a pseudocapacitive intercalation material. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Plasma treated TiO2/C nanofibers as high performance anode materials for sodium-ion batteries
    Wang, Rui
    Chen, Shuimei
    Ren, Daming
    Liu, Songting
    He, Beibei
    Gong, Yansheng
    Wang, Huanwen
    RSC ADVANCES, 2019, 9 (32): : 18451 - 18458
  • [22] Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries
    Zhang, Weifeng
    Luo, Ningjing
    Huang, Shuping
    Wu, Nae-Lih
    Wei, Mingdeng
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05): : 3791 - 3797
  • [23] Sodium and sodium-ion energy storage batteries
    Ellis, Brian L.
    Nazar, Linda F.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04): : 168 - 177
  • [24] Hollandite-Type VO1.75(OH)0.5: Effective Sodium Storage for High-Performance Sodium-Ion Batteries
    Jo, Jae Hyeon
    Choi, Ji Ung
    Cho, Min Kyung
    Aniskevich, Yauhen
    Kim, Hyungsub
    Ragoisha, Genady
    Streltsov, Eugene
    Kim, Jongsoon
    Myung, Seung-Taek
    ADVANCED ENERGY MATERIALS, 2019, 9 (22)
  • [25] Hybrid pseudocapacitance/co-intercalation mechanisms of TiO2/graphite anodes for rapid sodium-ion storage
    Yan, Ze-Rui
    Tang, Da-Fu
    Wang, Bin-Hao
    Huang, Xiao-Juan
    Zou, Xia
    Fan, Si-Cheng
    Wu, Yan
    Shu, Tong
    Wei, Qiu-Long
    RARE METALS, 2024, 43 (10) : 5427 - 5434
  • [26] TiO2 Nanotubes Array on Carbon Cloth as a Flexibility Anode for Sodium-Ion Batteries
    Gu, Xianli
    Wang, Saisai
    Wang, Linlin
    Wu, Chun
    Xu, Kaibing
    Zhao, Lingyu
    Liu, Qi
    Ding, Mei
    Xu, Jingli
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (01) : 226 - 230
  • [27] Facile Synthesis of Anatase TiO2 Nanospheres as Anode Materials for Sodium-Ion Batteries
    Sensen Zhang
    Ying Li
    Min Li
    JOM, 2018, 70 : 1411 - 1415
  • [28] Significantly Improving the Initial Coulombic Efficiency of TiO2 Anode for Sodium-Ion Batteries
    Wang, Qi
    Tang, Zhi
    Zhang, Rui
    Sun, Dan
    Fu, Liang
    Tang, Yougen
    Li, Huanhuan
    Xie, Hualin
    Wang, Haiyan
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (34) : 40508 - 40518
  • [29] Bronze-Phase TiO2 as Anode Materials in Lithium and Sodium-Ion Batteries
    Liang, Suzhe
    Wang, Xiaoyan
    Qi, Ruoxuan
    Cheng, Ya-Jun
    Xia, Yonggao
    Mueller-Buschbaum, Peter
    Hu, Xile
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (25)
  • [30] Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries
    Wang, Baofeng
    Zhao, Fei
    Du, Guodong
    Porter, Spencer
    Liu, Yong
    Zhang, Peng
    Cheng, Zhenxiang
    Liu, Hua Kun
    Huang, Zhenguo
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (25) : 16009 - 16015