Resonance Analysisfor Weakly Nonlinear Duffing-van der Pol Oscillation

被引:0
|
作者
Chen, Songlin [1 ]
Wang, Nannan [2 ]
机构
[1] School of Mathematics and Physics, Anhui University of Technology, Anhui, Maanshan,243002, China
[2] Anhui University of Technology, Anhui, Maanshan,243002, China
关键词
Harmonic analysis - Oscillators (mechanical);
D O I
暂无
中图分类号
学科分类号
摘要
The resonance phenomena of a weakly nonlinear, damped, Duffing-van der Pol oscillation is studied analytically and numerically. The methods of multiple scales is used to obtain uniformly valid asymptotic approximate solutions of the governing equation for various cases of primary harmonic resonance, super-harmonic resonance and sub-harmonic resonance respectively. The study shows that the steady amplitudes in the solutions of the nonlinear equation demonstrate the nonlinear phenomena involving jump and bistability at some bifurcation points. The quantitative relations of Frequency-Amplitude involving the parameters of damping, nonlinear, external force in the oscillator are obtained. The asymptotic approximation and numerical solutions are in vertically perfect agreement for all the cases considered. The results enrich previous researches just for Duffing or van der Pol oscillation respectively. © 2024, International Association of Engineers. All rights reserved.
引用
收藏
页码:238 / 242
相关论文
共 50 条
  • [41] Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method
    Li, Sujuan
    Niu, Jiangchuan
    Li, Xianghong
    CHINESE PHYSICS B, 2018, 27 (12)
  • [42] Uniformly valid solution of limit cycle of the Duffing-van der Pol equation
    Chen, Y. M.
    Liu, J. K.
    MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (07) : 845 - 850
  • [43] Non-standard reduction of noisy Duffing-van der Pol equation
    Namachchivaya, NS
    Sowers, RB
    Vedula, L
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (03): : 223 - 245
  • [44] 强迫Duffing-Van der Pol振子的混沌行为
    吴锋民
    斯公才
    科技通报, 1992, (02) : 83 - 87
  • [45] Duffing-Van der Pol系统的复杂动态行为(英文)
    冉彬
    蔡雅丽
    苟清明
    湘潭大学学报(自然科学版), 2010, 32 (02) : 17 - 23
  • [46] P-bifurcations in the stochastic version of the Duffing-van der Pol equation
    Namachchivaya, NS
    Liang, Y
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 231 - 234
  • [47] Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise
    Xu, Yong
    Gu, Rencai
    Zhang, Huiqing
    Xu, Wei
    Duan, Jinqiao
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [48] DYNAMICS OF A DUFFING-VAN DER POL OSCILLATOR WITH TIME DELAYED POSITION FEEDBACK
    Leung, A. Y. T.
    Guo, Z. J.
    Yang, H. X.
    PROCEEDINGS OF THE IJSSD SYMPOSIUM 2012 ON PROGRESS IN STRUCTURAL STABILITY AND DYNAMICS, 2012, : 39 - 45
  • [49] Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator
    Kumar, Pankaj
    Narayanan, S.
    Gupta, Sayan
    NONLINEAR DYNAMICS, 2016, 85 (01) : 439 - 452
  • [50] 耦合Duffing-van der Pol系统的首次穿越问题
    徐伟
    李伟
    靳艳飞
    赵俊锋
    力学学报, 2005, (05) : 620 - 626