Resonance Analysisfor Weakly Nonlinear Duffing-van der Pol Oscillation

被引:0
|
作者
Chen, Songlin [1 ]
Wang, Nannan [2 ]
机构
[1] School of Mathematics and Physics, Anhui University of Technology, Anhui, Maanshan,243002, China
[2] Anhui University of Technology, Anhui, Maanshan,243002, China
关键词
Harmonic analysis - Oscillators (mechanical);
D O I
暂无
中图分类号
学科分类号
摘要
The resonance phenomena of a weakly nonlinear, damped, Duffing-van der Pol oscillation is studied analytically and numerically. The methods of multiple scales is used to obtain uniformly valid asymptotic approximate solutions of the governing equation for various cases of primary harmonic resonance, super-harmonic resonance and sub-harmonic resonance respectively. The study shows that the steady amplitudes in the solutions of the nonlinear equation demonstrate the nonlinear phenomena involving jump and bistability at some bifurcation points. The quantitative relations of Frequency-Amplitude involving the parameters of damping, nonlinear, external force in the oscillator are obtained. The asymptotic approximation and numerical solutions are in vertically perfect agreement for all the cases considered. The results enrich previous researches just for Duffing or van der Pol oscillation respectively. © 2024, International Association of Engineers. All rights reserved.
引用
收藏
页码:238 / 242
相关论文
共 50 条
  • [31] 双势阱Duffing-Van der Pol系统反馈同步
    张香伟
    王建平
    河南科学, 2010, 28 (10) : 1225 - 1229
  • [32] Stochastic stability and control of coupled Duffing-van der Pol systems
    Li, W
    Xu, W
    Zhao, JF
    Jin, YF
    ACTA PHYSICA SINICA, 2005, 54 (12) : 5559 - 5565
  • [33] Complex Dynamics in a Duffing-Van der Pol Oscillator with φ6 Potential
    Yu, Jun
    Xie, Zhi-kun
    Yu, Li-xian
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (11)
  • [34] Lyapunov exponents and stability for the stochastic duffing-van der Pol oscillator
    Baxendale, PH
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS, 2003, 110 : 125 - 135
  • [35] Statistical dynamics at critical bifurcations in Duffing-van der Pol oscillator
    V. Chinnathambi
    S. Rajasekar
    Pramana, 1999, 52 : 561 - 577
  • [36] HOMOTOPY PERTURBATION METHOD TO SOLVE DUFFING-VAN DER POL EQUATION
    Moussa, Bagayogo
    Youssouf, Minoungou
    Wassiha, Nebie Abdoul
    Youssouf, Pare
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (03): : 299 - 315
  • [37] First Integrals and Solutions of Duffing-Van der Pol Type Equations
    Udwadia, Firdaus E.
    Cho, Hancheol
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2014, 81 (03):
  • [38] 扩展Duffing-Van der Pol系统混沌同步研究
    裴利军
    李战国
    洛阳理工学院学报(社会科学版), 2007, (04) : 15 - 20
  • [39] P-bifurcations in the noisy Duffing-van der Pol equation
    Liang, Y
    Namachchivaya, NS
    STOCHASTIC DYNAMICS, 1999, : 49 - 70
  • [40] Feedback control with time delay on Duffing-van der Pol oscillators
    Li, Xin-Ye
    Zhang, Zhen-Min
    Zhang, Hua-Biao
    Gao, Shi-Zhao
    Zhendong yu Chongji/Journal of Vibration and Shock, 2010, 29 (10): : 118 - 121