Windowed Fourier transform and general wavelet algorithms in quantum computation

被引:0
|
作者
Ma, Guangsheng [1 ]
Li, Hongbo [2 ]
Zhao, Jiman [1 ]
机构
[1] School of Mathematical Sciences, Beijing Normal University, Beijing,100875, China
[2] Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing,100190, China
来源
Quantum Information and Computation | 2019年 / 19卷 / 3-4期
基金
中国国家自然科学基金;
关键词
Fourier transforms - Wavelet transforms - Quantum computers - Integral equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define the quantum windowed Fourier transform and study some of its properties, then we develop two useful operations called quantum convolution and ‘integral’. Quantum ‘integral’ allows us to implement the integral transforms quantummechanically with a certain probability, including general wavelet kernel transforms. Furthermore, we propose an improved wavelet kernel transform for quantum computation. © Rinton Press.
引用
收藏
页码:237 / 251
相关论文
共 50 条
  • [41] Windowed discrete Fourier transform for shifting data
    Sherlock, BG
    SIGNAL PROCESSING, 1999, 74 (02) : 169 - 177
  • [42] An improved windowed Fourier transform for fringe demodulation
    Quan, C.
    Niu, H.
    Tay, C. J.
    OPTICS AND LASER TECHNOLOGY, 2010, 42 (01): : 126 - 131
  • [43] LOCALIZATION OPERATORS RELATED TO α-WINDOWED FOURIER TRANSFORM
    Catana, Viorel
    Flondor, Ioana-Maria
    Scumpu, Mihaela-Gratiela
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (04): : 11 - 22
  • [44] Sharper uncertainty principles for the windowed Fourier transform
    Liu, Ming-Sheng
    Kou, Kit Ian
    Morais, Joao
    Dang, Pei
    JOURNAL OF MODERN OPTICS, 2015, 62 (01) : 46 - 55
  • [45] Windowed Fourier transform for fringe pattern analysis
    Kemao, Q
    APPLIED OPTICS, 2004, 43 (13) : 2695 - 2702
  • [46] Shape Analysis with Anisotropic Windowed Fourier Transform
    Melzi, Simone
    Rodola, Emanuele
    Castellani, Umberto
    Bronstein, Michael M.
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 470 - 478
  • [47] Accurate two-dimensional cardiac strain calculation using adaptive windowed Fourier transform and Gabor wavelet transform
    Y. B. Fu
    C. K. Chui
    C. L. Teo
    International Journal of Computer Assisted Radiology and Surgery, 2013, 8 : 135 - 144
  • [48] Accurate two-dimensional cardiac strain calculation using adaptive windowed Fourier transform and Gabor wavelet transform
    Fu, Y. B.
    Chui, C. K.
    Teo, C. L.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2013, 8 (01) : 135 - 144
  • [49] Inversion formula for the windowed Fourier transform, II
    Sun, Xudong
    Sun, Wenchang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (01) : 21 - 34
  • [50] Generating Formally Verified Quantum Fourier Transform Algorithms
    Brinich, Patrick
    Johnson, Jeremy
    INTELLIGENT COMPUTER MATHEMATICS, CICM 2024, 2024, 14690 : 261 - 276