Windowed Fourier transform and general wavelet algorithms in quantum computation

被引:0
|
作者
Ma, Guangsheng [1 ]
Li, Hongbo [2 ]
Zhao, Jiman [1 ]
机构
[1] School of Mathematical Sciences, Beijing Normal University, Beijing,100875, China
[2] Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing,100190, China
来源
Quantum Information and Computation | 2019年 / 19卷 / 3-4期
基金
中国国家自然科学基金;
关键词
Fourier transforms - Wavelet transforms - Quantum computers - Integral equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define the quantum windowed Fourier transform and study some of its properties, then we develop two useful operations called quantum convolution and ‘integral’. Quantum ‘integral’ allows us to implement the integral transforms quantummechanically with a certain probability, including general wavelet kernel transforms. Furthermore, we propose an improved wavelet kernel transform for quantum computation. © Rinton Press.
引用
收藏
页码:237 / 251
相关论文
共 50 条
  • [21] Windowed Fourier transform and cross-correlation algorithms for molecular tagging velocimetry
    Charonko, John J.
    Fratantonio, Dominique
    Mayer, J. Michael
    Bordoloi, Ankur
    Prestridge, Kathy P.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (07)
  • [22] Inversion formula for the windowed Fourier transform
    Sun, W.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (07) : 914 - 921
  • [23] Windowed special affine Fourier transform
    Shah, Firdous A.
    Teali, Aajaz A.
    Tantary, Azhar Y.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (03) : 1389 - 1420
  • [24] Comparison of algorithms for the fast computation of the continuous wavelet transform
    Vrhel, MJ
    Lee, C
    Unser, M
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IV, PTS 1 AND 2, 1996, 2825 : 422 - 431
  • [25] Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry
    Huang, Lei
    Kemao, Qian
    Pan, Bing
    Asundi, Anand Krishna
    OPTICS AND LASERS IN ENGINEERING, 2010, 48 (02) : 141 - 148
  • [26] The Sliding Windowed Infinite Fourier Transform
    Grado, Logan L.
    Johnson, Matthew D.
    Netoff, Theoden I.
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (05) : 183 - 188
  • [27] Real Clifford Windowed Fourier Transform
    Bahri, Mawardi
    Adji, Sriwulan
    Zhao, Ji Man
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (03) : 505 - 518
  • [28] Windowed special affine Fourier transform
    Firdous A. Shah
    Aajaz A. Teali
    Azhar Y. Tantary
    Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 1389 - 1420
  • [29] A New Windowed Graph Fourier Transform
    Le Trung Thanh
    Nguyen Linh-Trung
    Nguyen Viet Dung
    Abed-Meraim, Karim
    2017 4TH NAFOSTED CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2017, : 150 - 155
  • [30] Real clifford windowed Fourier transform
    Mawardi Bahri
    Sriwulan Adji
    Ji Man Zhao
    Acta Mathematica Sinica, English Series, 2011, 27 : 505 - 518