Hydrological Evaluation of Meandering River Restoration in Kushiro Wetland Using a Long Short-Term Memory (Lstm)Based Model for Groundwater Level Prediction

被引:0
|
作者
Yamaguchi, Takumi [1 ]
Miyamoto, Hitoshi [1 ]
Oishi, Tetsuya [2 ]
机构
[1] Department of Civil Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo,135-8548, Japan
[2] River Engineering Research Team, Civil Engineering Research Institute for Cold Region, Public Works Research Institute, 1-34 Hiragishi 1-Jo 3-Chome, Toyohira-Ku, Hokkaido, Sapporo,062-8602, Japan
来源
SSRN | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Data driven - Data-driven AI model - Deep learning - Ground water level - Hydrological process - Importance analysis - Peat land - Variable importance analyse - Variable importances - Wetland restoration
引用
收藏
相关论文
共 50 条
  • [41] Detecting Android malware using Long Short-term Memory (LSTM)
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    Kumar, S. Sachin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (03) : 1277 - 1288
  • [42] Intrusion detection systems using long short-term memory (LSTM)
    Laghrissi, FatimaEzzahra
    Douzi, Samira
    Douzi, Khadija
    Hssina, Badr
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [43] Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model
    Song, Xuanyi
    Liu, Yuetian
    Xue, Liang
    Wang, Jun
    Zhang, Jingzhe
    Wang, Junqiang
    Jiang, Long
    Cheng, Ziyan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 186 (186)
  • [44] Ten-minute prediction of solar irradiance based on cloud detection and a long short-term memory (LSTM) model
    Zuo, Hui-Min
    Qiu, Jun
    Jia, Ying-Hui
    Wang, Qi
    Li, Fang-Fang
    ENERGY REPORTS, 2022, 8 : 5146 - 5157
  • [45] Lane Position Detection Based on Long Short-Term Memory (LSTM)
    Yang, Wei
    Zhang, Xiang
    Lei, Qian
    Shen, Dengye
    Xiao, Ping
    Huang, Yu
    SENSORS, 2020, 20 (11)
  • [46] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [47] Prediction of COVID-19 cases by multifactor driven long short-term memory (LSTM) model
    Shao, Yanwen
    Wan, Tsz Kin
    Chan, Kei Hang Katie
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [48] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [49] Incrementally trained short-term wind turbine power prediction model based on long short-term memory
    Yu, Qihui
    Liu, Xiaohui
    Tan, Xin
    Qin, Ripeng
    Hao, Xueqing
    Sun, Guoxin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2025,
  • [50] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)