Hydrological Evaluation of Meandering River Restoration in Kushiro Wetland Using a Long Short-Term Memory (Lstm)Based Model for Groundwater Level Prediction

被引:0
|
作者
Yamaguchi, Takumi [1 ]
Miyamoto, Hitoshi [1 ]
Oishi, Tetsuya [2 ]
机构
[1] Department of Civil Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo,135-8548, Japan
[2] River Engineering Research Team, Civil Engineering Research Institute for Cold Region, Public Works Research Institute, 1-34 Hiragishi 1-Jo 3-Chome, Toyohira-Ku, Hokkaido, Sapporo,062-8602, Japan
来源
SSRN | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Data driven - Data-driven AI model - Deep learning - Ground water level - Hydrological process - Importance analysis - Peat land - Variable importance analyse - Variable importances - Wetland restoration
引用
收藏
相关论文
共 50 条
  • [21] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [22] UTILIZING LONG SHORT-TERM MEMORY (LSTM) NETWORKS FOR RIVER FLOW PREDICTION IN THE BRAZILIAN PANTANAL BASIN
    Descovi, C. S.
    Zuffo, A. C.
    Mohammadizadeh, S. M.
    Murillo-Bermudez, L. F.
    Sierra, D. A.
    HOLOS, 2023, 39 (05)
  • [23] Water Level Prediction and Forecasting Using a Long Short-Term Memory Model for Nam Ngum River Basin in Lao PDR
    Kim, Choong-Soo
    Kim, Cho-Rong
    Kok, Kah-Hoong
    Lee, Jeong-Min
    WATER, 2024, 16 (13)
  • [24] The Early Prediction of Kimchi Cabbage Heights Using Drone Imagery and the Long Short-Term Memory (LSTM) Model
    Go, Seung-hwan
    Park, Jong-hwa
    DRONES, 2024, 8 (09)
  • [25] MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction
    Naheliya, Bharti
    Redhu, Poonam
    Kumar, Kranti
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 634
  • [26] Water Level Prediction Model Applying a Long Short-Term Memory (LSTM)-Gated Recurrent Unit (GRU) Method for Flood Prediction
    Cho, Minwoo
    Kim, Changsu
    Jung, Kwanyoung
    Jung, Hoekyung
    WATER, 2022, 14 (14)
  • [27] FUEL MOISTURE CONTENT FORECASTING USING LONG SHORT-TERM MEMORY(LSTM) MODEL
    Kang, Zhenyu
    Jiao, Miao
    Zhou, Zijie
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5672 - 5675
  • [28] A transfer learning-based long short-term memory model for the prediction of river water temperature
    Chen, Jinzhou
    Xue, Xinhua
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [29] Brain tumor detection: a long short-term memory (LSTM)-based learning model
    Javaria Amin
    Muhammad Sharif
    Mudassar Raza
    Tanzila Saba
    Rafiq Sial
    Shafqat Ali Shad
    Neural Computing and Applications, 2020, 32 : 15965 - 15973
  • [30] Brain tumor detection: a long short-term memory (LSTM)-based learning model
    Amin, Javaria
    Sharif, Muhammad
    Raza, Mudassar
    Saba, Tanzila
    Sial, Rafiq
    Shad, Shafqat Ali
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20): : 15965 - 15973