Hydrological Evaluation of Meandering River Restoration in Kushiro Wetland Using a Long Short-Term Memory (Lstm)Based Model for Groundwater Level Prediction

被引:0
|
作者
Yamaguchi, Takumi [1 ]
Miyamoto, Hitoshi [1 ]
Oishi, Tetsuya [2 ]
机构
[1] Department of Civil Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo,135-8548, Japan
[2] River Engineering Research Team, Civil Engineering Research Institute for Cold Region, Public Works Research Institute, 1-34 Hiragishi 1-Jo 3-Chome, Toyohira-Ku, Hokkaido, Sapporo,062-8602, Japan
来源
SSRN | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Data driven - Data-driven AI model - Deep learning - Ground water level - Hydrological process - Importance analysis - Peat land - Variable importance analyse - Variable importances - Wetland restoration
引用
收藏
相关论文
共 50 条
  • [1] Prediction of groundwater levels using a long short-term memory (LSTM) technique
    Thakur, Abhinav
    Chandel, Abhishish
    Shankar, Vijay
    JOURNAL OF HYDROINFORMATICS, 2024, 27 (01) : 51 - 68
  • [2] Using Simple LSTM Models to Evaluate Effects of a River Restoration on Groundwater in Kushiro Wetland, Hokkaido, Japan
    Yamaguchi, Takumi
    Miyamoto, Hitoshi
    Oishi, Tetsuya
    WATER, 2023, 15 (06)
  • [3] Long Short-Term Memory (LSTM) Based Model for Flood Forecasting in Xiangjiang River
    Yizhuang Liu
    Yue Yang
    Ren Jie Chin
    Chucai Wang
    Changshun Wang
    KSCE Journal of Civil Engineering, 2023, 27 : 5030 - 5040
  • [4] Long Short-Term Memory (LSTM) Based Model for Flood Forecasting in Xiangjiang River
    Liu, Yizhuang
    Yang, Yue
    Chin, Ren Jie
    Wang, Chucai
    Wang, Changshun
    KSCE JOURNAL OF CIVIL ENGINEERING, 2023, 27 (11) : 5030 - 5040
  • [5] A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory
    Wang, Lifang
    Jiang, Zhengwen
    Song, Lei
    Yu, Xi
    Yuan, Shujun
    Zhang, Baoyi
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (11) : 2962 - 2979
  • [6] STOCK MARKET PREDICTION USING LONG SHORT-TERM MEMORY (LSTM)
    Abu Nadif, Mohammad
    Samin, Towhidur Rahman
    Islam, Tohedul
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [7] Long short-term memory model for predicting groundwater level in Alabama
    Robinson, Victoria
    Ershadnia, Reza
    Soltanian, Mohamad Reza
    Rasoulzadeh, Mojdeh
    Guthrie, Gregory M.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2024, 60 (01): : 226 - 246
  • [8] Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network
    Vu, M. T.
    Jardani, A.
    Massei, N.
    Fournier, M.
    JOURNAL OF HYDROLOGY, 2021, 597
  • [9] Long short-term memory (LSTM)-based news classification model
    Liu, Chen
    PLOS ONE, 2024, 19 (05):
  • [10] Using long short-term memory networks for river flow prediction
    Xu, Wei
    Jiang, Yanan
    Zhang, Xiaoli
    Li, Yi
    Zhang, Run
    Fu, Guangtao
    HYDROLOGY RESEARCH, 2020, 51 (06): : 1358 - 1376