Integrable and superintegrable systems of cylindrical type in magnetic fields

被引:0
|
作者
Kubů, Ondřej
机构
来源
arXiv | 2022年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic fields
引用
收藏
相关论文
共 50 条
  • [41] MAGNETIC AND RF FIELDS FOR WHICH EQUATIONS OF MOTION ARE INTEGRABLE
    GRAY, EP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1270 - 1270
  • [42] On maximally superintegrable systems
    Tsiganov, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (03): : 178 - 190
  • [43] Perturbations of Superintegrable Systems
    Hanssmann, Heinz
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 79 - 95
  • [44] Superintegrable systems on a sphere
    Borisov, AV
    Mamaev, IS
    REGULAR & CHAOTIC DYNAMICS, 2005, 10 (03): : 257 - 266
  • [45] On the superintegrable Richelot systems
    Tsiganov, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (05)
  • [46] On maximally superintegrable systems
    A. V. Tsiganov
    Regular and Chaotic Dynamics, 2008, 13
  • [47] On Euler superintegrable systems
    Grigoryev, Yu A.
    Khudobakhshov, V. A.
    Tsiganov, A. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (07)
  • [48] On superintegrable monopole systems
    Hoque, Md Fazlul
    Marquette, Ian
    Zhang, Yao-Zhong
    XXV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-25), 2018, 965
  • [49] The Drach superintegrable systems
    Tsiganov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : 7407 - 7422
  • [50] Quasi-integrable and superintegrable systems from a 'deformed-mass' two-photon algebra
    Herranz, FJ
    Ballesteros, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (11) : 1239 - 1244