A prior error estimate for linear finite element approximation to interface optimal control problems

被引:0
|
作者
Guan, Hongbo [1 ]
Hao, Chaoyang [2 ]
Hong, Yapeng [1 ]
Yin, Pei [3 ]
机构
[1] College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou,450002, China
[2] Department of Mathematical Sciences, Tongji University, Shanghai,200092, China
[3] Business School, University of Shanghai for Science and Technology, Shanghai,200093, China
来源
基金
中国国家自然科学基金;
关键词
Optimal control systems - Errors;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers a linear finite element method for the constrained optimal control problems (OCPs) governed by elliptic interface equations. The state and adjoint state are approximated by the conforming P1 elements, while the control is approximated with the orthogonal projection of the adjoint state. Optimal order error estimates are proved in both L2-norm and broken energy norm. Lastly, some numerical results are presented to confirm the theoretical analysis. © 2020.
引用
收藏
页码:96 / 101
相关论文
共 50 条
  • [41] Finite element error estimation for parabolic optimal control problems with time delay
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    APPLIED NUMERICAL MATHEMATICS, 2025, 212 : 176 - 196
  • [42] Finite Element Error Estimation for Parabolic Optimal Control Problems with Pointwise Observations
    Liang, Dongdong
    Gong, Wei
    Xie, Xiaoping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01): : 165 - 199
  • [43] Error estimates of mixed finite element methods for quadratic optimal control problems
    Xing, Xiaoqing
    Chen, Yanping
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1812 - 1820
  • [45] On optimal finite element approximation for unilateral contact problems
    Hild, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10): : 1233 - 1236
  • [46] A Priori Error Analysis for the Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems
    May, S.
    Rannacher, R.
    Vexler, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 637 - +
  • [47] ERROR ESTIMATES OF SEMIDISCRETE FINITE ELEMENT APPROXIMATION FOR MINIMAL TIME IMPULSE CONTROL PROBLEMS
    Huang, Jingfang
    Yu, Xin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (10): : 4345 - 4360
  • [48] Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains
    Gong, Wei
    Liang, Dongdong
    Xie, Xiaoping
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (02)
  • [49] Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains
    Wei Gong
    Dongdong Liang
    Xiaoping Xie
    Advances in Computational Mathematics, 2023, 49
  • [50] Error estimates for the finite element approximation of problems in unbounded domains
    Han, H
    Bao, WH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) : 1101 - 1119