Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains

被引:0
|
作者
Gong, Wei [1 ,2 ,3 ,4 ]
Liang, Dongdong [5 ]
Xie, Xiaoping [5 ]
机构
[1] Univ Chinese Acad Sci, Inst Computat Math, Acad Math & Syst Sci, Chinese Acad Sci,NCMIS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Inst Computat Math, Acad Math & Syst Sci, Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Inst Computat Math, Acad Math & Syst Sci, Sch Math Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Inst Computat Math, Acad Math & Syst Sci, Sch Math Sci, Beijing 100190, Peoples R China
[5] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic Dirichlet problem; Smooth domain; Finite element method; Regularized Green's function; Pointwise error estimate; MAXIMUM-NORM; INTERPOLATION; ANALYTICITY; STABILITY; LINFINITY; EQUATIONS;
D O I
10.1007/s10444-023-10017-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider pointwise error estimation for the linear finite element approximation to -delta u + u = f in omega, u = g on gamma, where omega is a bounded domain in R-N (N = 2,3) with smooth boundary gamma. The domain omega is approximated by a polyhedron omega(h) with boundary gamma(h), while the Dirichlet data g is approximated by the Lagrange interpolation or L-2-projection of its transformation to gamma(h). By using a duality argument, the pointwise errors are converted to the approximation errors plus the finite element errors for two classes of regularized Green's functions under the W-1,W-1-norm, while the latter errors are further converted to the local weighted H-1- and L-2-norms estimates by using the dyadic annuli decomposition. Finally, we obtain the convergence rates O(h(2)|log h|) for the L-infinity-norm error and O(h) for the W-1,W-infinity-norm error. Numerical examples are provided to confirm our theoretical findings.
引用
收藏
页数:33
相关论文
共 50 条