Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain

被引:0
|
作者
Takahito Kashiwabara
Tomoya Kemmochi
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
[2] Nagoya University,Department of Applied Physics, Graduate School of Engineering
来源
Numerische Mathematik | 2020年 / 144卷
关键词
Primary 65N30; Secondary 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
Pointwise error analysis of the linear finite element approximation for -Δu+u=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,\Delta u + u = f$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, ∂nu=τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _n u = \tau $$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}, is presented. We establish O(h2|logh|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2|\log h|)$$\end{document} and O(h) error bounds in the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}- and W1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,\infty }$$\end{document}-norms respectively, by adopting the technique of regularized Green’s functions combined with local H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}- and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-estimates in dyadic annuli. Since the computational domain Ωh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _h$$\end{document} is only polyhedral, one has to take into account non-conformity of the approximation caused by the discrepancy Ωh≠Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _h \ne \Omega $$\end{document}. In particular, the so-called Galerkin orthogonality relation, utilized three times in the proof, does not exactly hold and involves domain perturbation terms (or boundary-skin terms), which need to be addressed carefully. A numerical example is provided to confirm the theoretical result.
引用
收藏
页码:553 / 584
页数:31
相关论文
共 50 条
  • [1] Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain
    Kashiwabara, Takahito
    Kemmochi, Tomoya
    [J]. NUMERISCHE MATHEMATIK, 2020, 144 (03) : 553 - 584
  • [2] Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains
    Wei Gong
    Dongdong Liang
    Xiaoping Xie
    [J]. Advances in Computational Mathematics, 2023, 49
  • [3] Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains
    Gong, Wei
    Liang, Dongdong
    Xie, Xiaoping
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (02)
  • [4] Finite element error estimates for Neumann boundary control problems on graded meshes
    Thomas Apel
    Johannes Pfefferer
    Arnd Rösch
    [J]. Computational Optimization and Applications, 2012, 52 : 3 - 28
  • [5] Finite element error estimates for Neumann boundary control problems on graded meshes
    Apel, Thomas
    Pfefferer, Johannes
    Roesch, Arnd
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (01) : 3 - 28
  • [6] TIME DOMAIN BOUNDARY ELEMENT METHODS FOR THE NEUMANN PROBLEM: ERROR ESTIMATES AND ACOUSTIC PROBLEMS
    Gimperlein, Heiko
    Ozdemir, Ceyhun
    Stephan, Ernst P.
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (01) : 70 - 89
  • [7] POINTWISE ESTIMATES FOR A FINITE-ELEMENT SOLUTION OF NONLINEAR BOUNDARY-VALUE PROBLEMS
    MITTELMANN, HD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) : 773 - 778
  • [8] EXPLICIT FINITE ELEMENT ERROR ESTIMATES FOR NONHOMOGENEOUS NEUMANN PROBLEMS
    Li, Qin
    Liu, Xuefeng
    [J]. APPLICATIONS OF MATHEMATICS, 2018, 63 (03) : 367 - 379
  • [9] Explicit Finite Element Error Estimates for Nonhomogeneous Neumann Problems
    Qin Li
    Xuefeng Liu
    [J]. Applications of Mathematics, 2018, 63 : 367 - 379
  • [10] Pointwise error estimates for differences in piecewise linear finite element approximations
    Schatz, AH
    Wahlbin, LB
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) : 2149 - 2160