Diabetic retinopathy detection using principal component analysis multi-label feature extraction and classification

被引:3
|
作者
Usman T.M. [1 ]
Saheed Y.K. [1 ]
Ignace D. [1 ]
Nsang A. [1 ]
机构
[1] School of Information Technology & Computing, American University of Nigeria, 98 Lamido Zubairu Way Yola, Township By-Pass PMB 2250 Yola, Adamawa, Yola
关键词
Color fundus photographs; Convolution Neural Network; Diabetes mellitus; Diabetic retinopathy; Multi-label classification; Principal component analysis;
D O I
10.1016/j.ijcce.2023.02.002
中图分类号
学科分类号
摘要
Diabetic Retinopathy (DR) is the most common cause of eyesight loss that affects millions of people worldwide. Although there are recognized screening procedures for detecting the condition, such as fluorescein angiography and optical coherence tomography, the majority of patients are unaware and fail to have such tests at the proper time. Prompt identification of the condition is critical in avoiding vision loss, which occurs when Diabetes Mellitus (DM) is left untreated for an extended length of time. Several Machine Learning (ML) and Deep Learning (DL) algorithms have been used on DR datasets for disease prediction and classification, however, the majority of them have ignored the element of data pre-processing and dimensionality reduction, which are known as a major gap resulting in biased findings. In the first line of this research, data preprocessing was performed on the color Fundus Photographs (CFPs). Subsequently, we performed feature extraction with Principal Component Analysis (PCA). A Deep Learning Multi-Label Feature Extraction and Classification (ML-FEC) model based on pre-trained Convolutional Neural Network (CNN) architecture was proposed. Then, transfer learning was applied to train a subset of the images using three state-of-the-art CNN architectures, namely, ResNet50, ResNet152, and SqueezeNet1 with parameter-tuning to identify and classify the lesions. The experimental findings revealed an accuracy of 93.67% with a hamming loss of 0.0603 for ResNet 50, an accuracy of 91.94%, and Hamming Loss of 0.0805 for Squeezenet1 and an accuracy of 94.40% with Hamming loss of 0.0560 was achieved by ResNet 152 which demonstrates the suitability of the model for implementation in daily clinical practice and to support large scale DR screening programs. © 2023 The Authors
引用
收藏
页码:78 / 88
页数:10
相关论文
共 50 条
  • [41] Categorizing feature selection methods for multi-label classification
    Rafael B. Pereira
    Alexandre Plastino
    Bianca Zadrozny
    Luiz H. C. Merschmann
    Artificial Intelligence Review, 2018, 49 : 57 - 78
  • [42] Feature Selection in Multi-label classification through MLQPFS
    Soheili, Majid
    Moghadam, Amir-Massoud Eftekhari
    2016 4TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2016, : 430 - 434
  • [43] Memetic feature selection algorithm for multi-label classification
    Lee, Jaesung
    Kim, Dae-Won
    INFORMATION SCIENCES, 2015, 293 : 80 - 96
  • [44] Multi-label text classification with an ensemble feature space
    Tandon, Kushagri
    Chatterjee, Niladri
    Journal of Intelligent and Fuzzy Systems, 2022, 42 (05): : 4425 - 4436
  • [45] Optimization approach for feature selection in multi-label classification
    Lim, Hyunki
    Lee, Jaesung
    Kim, Dae-Won
    PATTERN RECOGNITION LETTERS, 2017, 89 : 25 - 30
  • [46] Multi-label Learning Based On Label-specific Feature Extraction
    Nie, Ting
    2018 9TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK), 2018, : 298 - 305
  • [47] Multi-Label Classification using an Ontology
    Traore, Yaya
    Bassole, Didier
    Malo, Sadouanouan
    Sere, Abdoulaye
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 472 - 476
  • [48] An Analysis of Chaining in Multi-Label Classification
    Dembczynski, Krzysztof
    Waegeman, Willem
    Huellermeir, Eyke
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 294 - +
  • [49] Label distribution feature selection for multi-label classification with rough set
    Qian, Wenbin
    Huang, Jintao
    Wang, Yinglong
    Xie, Yonghong
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 128 : 32 - 55
  • [50] Feature distribution-based label correlation in multi-label classification
    Xiaoya Che
    Degang Chen
    Jusheng Mi
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 1705 - 1719