The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co(Fe1-xAlx)2O4 system

被引:0
|
作者
Zhou C. [1 ]
Zhang A. [1 ]
Chang T. [2 ]
Chen Y. [2 ]
Zhang Y. [1 ]
Tian F. [1 ]
Zuo W. [1 ]
Ren Y. [3 ]
Song X. [1 ]
Yang S. [1 ]
机构
[1] School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an
[2] ChemMatCARS, The University of Chicago, Argonne, 60439, IL
[3] X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, 60439, IL
来源
Materials | 2019年 / 12卷 / 10期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Magnetostriction; Phase boundary; Phase diagram; Spinel oxide;
D O I
10.3390/MA12101685
中图分类号
学科分类号
摘要
We report the magnetic and magnetostrictive behaviors of the pseudobinary ferrimagnetic spinel oxide system (1-x)CoFe2O4-xCoAl2O4 [Co(Fe1-xAlx)2O4], with one end-member being the ferrimagnetic CoFe2O4 and the other end-member being CoAl2O4 that is paramagnetic above 9.8 K. The temperature spectra of magnetization and magnetic susceptibility were employed to detect the magnetic transition temperatures and to determine the phase diagram of this system. Composition dependent and temperature dependent magnetostrictive behaviors reveal an exotic phase boundary that separates two ferrimagnetic states: At room temperature and under small magnetic fields (~500 Oe), Fe-rich compositions exhibit negative magnetostriction while the Al-rich compositions exhibit positive magnetostriction though the values are small (< 10 ppm). Moreover, the compositions around this phase boundary at room temperature (x = 0.35, 0.4, 0.45, 0.5) exhibit near-zero magnetostriction and enhanced magnetic susceptibility, which may be promising in the applications for magnetic cores, current sensors, or magnetic shielding materials. © 2019 by the authors.
引用
收藏
相关论文
共 50 条
  • [31] THE INFLUENCE OF THE ATOMIC SHORT-RANGE ORDER ON THE MAGNETIC PHASE-DIAGRAM OF FE1-XALX CONCENTRATED SPIN-GLASS ALLOY
    SWIDERCZAK, K
    SUKIENNICKI, A
    ACTA PHYSICA POLONICA A, 1987, 72 (02) : 257 - 258
  • [32] Anisotropic light absorption of the ferrite solid solutions Ca-2(Fe1-xAlx)O-5
    Maki, I
    Ichikawa, M
    Yoshida, H
    Yoshida, T
    CEMENT AND CONCRETE RESEARCH, 1996, 26 (12) : 1801 - 1808
  • [33] Phase transition and low-temperature sintering of Zn(Mn1-xAlx)2O4 ceramics for LTCC applications
    Lan, Xue-Kai
    Zou, Zheng-Yu
    Lu, Wen-Zhong
    Zhu, Jian-Hua
    Lei, Wen
    CERAMICS INTERNATIONAL, 2016, 42 (15) : 17731 - 17735
  • [34] Magnetic Properties and Hyperfine Interaction of BaSrCo2(Fe1-xAlx)12O22 Hexaferrite
    Lim, Jung Tae
    Kim, Chul Sung
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (11) : 1679 - 1683
  • [35] Conductivity of Potassium-Cationic Solid Electrolytes in the K0.85Pb0.075(Fe1-xAlx)O2 System
    Burmakin, E. I.
    Shekhtman, G. Sh.
    Antonov, B. D.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2011, 47 (04) : 453 - 456
  • [37] THERMODYNAMIC PROPERTIES OF MIXING OF SPINEL OF (FE, MG, ZN)(AL, CR)2O4 DEDUCED BASED ON THE METHOD OF PHASE CORRESPONDENCE
    GHERYA, TV
    PERCHUK, LL
    GEOKHIMIYA, 1990, (10): : 1412 - 1418
  • [39] Analysis of the alternating current conductivity and magnetic behaviors for the polycrystalline Y-type Ba0.5Sr1.5Co2(Fe1-xAlx)12O22 hexaferrites
    Wu, M. X.
    Zhong, W. J.
    Gao, X. S.
    Liu, L. J.
    Liu, Z. W.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (22)
  • [40] Magnetic Structure of Co(Cr0.925Fe0.075)2O4
    Kumar, Ram
    Padam, R.
    Rayaprol, Sudhindra
    Siruguri, Vasudeva
    Ramakrishnan, S.
    Pal, D.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731