The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co(Fe1-xAlx)2O4 system

被引:0
|
作者
Zhou C. [1 ]
Zhang A. [1 ]
Chang T. [2 ]
Chen Y. [2 ]
Zhang Y. [1 ]
Tian F. [1 ]
Zuo W. [1 ]
Ren Y. [3 ]
Song X. [1 ]
Yang S. [1 ]
机构
[1] School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an
[2] ChemMatCARS, The University of Chicago, Argonne, 60439, IL
[3] X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, 60439, IL
来源
Materials | 2019年 / 12卷 / 10期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Magnetostriction; Phase boundary; Phase diagram; Spinel oxide;
D O I
10.3390/MA12101685
中图分类号
学科分类号
摘要
We report the magnetic and magnetostrictive behaviors of the pseudobinary ferrimagnetic spinel oxide system (1-x)CoFe2O4-xCoAl2O4 [Co(Fe1-xAlx)2O4], with one end-member being the ferrimagnetic CoFe2O4 and the other end-member being CoAl2O4 that is paramagnetic above 9.8 K. The temperature spectra of magnetization and magnetic susceptibility were employed to detect the magnetic transition temperatures and to determine the phase diagram of this system. Composition dependent and temperature dependent magnetostrictive behaviors reveal an exotic phase boundary that separates two ferrimagnetic states: At room temperature and under small magnetic fields (~500 Oe), Fe-rich compositions exhibit negative magnetostriction while the Al-rich compositions exhibit positive magnetostriction though the values are small (< 10 ppm). Moreover, the compositions around this phase boundary at room temperature (x = 0.35, 0.4, 0.45, 0.5) exhibit near-zero magnetostriction and enhanced magnetic susceptibility, which may be promising in the applications for magnetic cores, current sensors, or magnetic shielding materials. © 2019 by the authors.
引用
收藏
相关论文
共 50 条
  • [22] Exotic properties of spinel oxide superconductor Li1-xTi2O4
    Liao, YC
    Du, CH
    Xu, F
    Wang, MJ
    Wu, C
    Hsu, YY
    Wu, MK
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 408 : 369 - 371
  • [23] Comparison of Ba(B1-xAlx)2O4 single crystals on their diameters
    Miyazaki, A
    Kimura, H
    Jia, X
    Shimamura, K
    Fukuda, T
    CRYSTAL RESEARCH AND TECHNOLOGY, 1999, 34 (07) : 817 - 820
  • [24] Spinel phase relations in the Fe3O4-CuFe2O4 system
    Katkov, AE
    Lykasov, AA
    INORGANIC MATERIALS, 2003, 39 (02) : 171 - 174
  • [25] Hyperfine interactions in the intermetallic system Ce(Fe1-xAlx)(2) Al-rich side
    Samudio, CA
    BaggioSaitovitch, E
    Takeuchi, AY
    daCunha, SF
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1997, 167 (1-2) : 109 - 114
  • [26] Spin-glass ordering in a spinel ferrite, Mg(Al, Fe)2O4
    Bhargava, SC
    Morrish, AH
    Kunkel, H
    Li, ZW
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (46) : 9667 - 9687
  • [27] Cation distribution in Zn(Ga,Fe)2O4 solid solutions with spinel structure
    Wang Jing
    Dent Tong
    Yang Cai-Qin
    Wang Wei
    JOURNAL OF INORGANIC MATERIALS, 2008, 23 (01) : 190 - 194
  • [28] PHASE-DIAGRAM OF THE FE2O3-FE3O4-KFEO2 SYSTEM
    DVORETSKII, NV
    STEPANOV, EG
    YUN, VV
    INORGANIC MATERIALS, 1991, 27 (06) : 1064 - 1067
  • [29] Probing giant reduction of Tc in the Li(Ti1-xVx)2O4 spinel system
    Kichambare, P
    Kijima, N
    Honma, H
    Ebisu, S
    Nagata, S
    APPLIED SUPERCONDUCTIVITY, 1997, 5 (1-6) : 101 - 106
  • [30] Spinel Phase Relations in the Fe3O4–CuFe2O4 System
    A. E. Katkov
    A. A. Lykasov
    Inorganic Materials, 2003, 39 : 171 - 174