A machine learning-based lightweight intrusion detection system for the internet of things

被引:28
|
作者
Fenanir S. [1 ]
Semchedine F. [2 ]
Baadache A. [3 ]
机构
[1] Department of Computer Science, Faculty of Exact Sciences, University of Bejaia, Bejaia
[2] Institute of Optics and Precision Mechanics (IOMP), University of Setif 1, Setif
[3] University of Alger 3, Algiers
来源
Revue d'Intelligence Artificielle | 2019年 / 33卷 / 03期
关键词
Anomaly detection; Feature selection; Internet of things (IoT); Intrusion detection system (IDS);
D O I
10.18280/ria.330306
中图分类号
学科分类号
摘要
The Internet of Things (IoT) is vulnerable to various attacks, due to the presence of tiny computing devices. To enhance the security of the IoT, this paper builds a lightweight intrusion detection system (IDS) based on two machine learning techniques, namely, feature selection and feature classification. The feature selection was realized by the filter-based method, thanks to its relatively low computing cost. The feature classification algorithm for our system was identified through comparison between logistic regression (LR), naive Bayes (NB), decision tree (DT), random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM) and multilayer perceptron (MLP). Finally, the DT algorithm was selected for our system, owing to its outstanding performance on several datasets. The research results provide a guide on choosing the optimal feature selection method for machine learning. © 2019 Lavoisier. All rights reserved.
引用
下载
收藏
页码:203 / 211
页数:8
相关论文
共 50 条
  • [31] A lightweight Intrusion Detection for Internet of Things-based smart buildings
    Murthy, Amith
    Asghar, Muhammad Rizwan
    Tu, Wanqing
    SECURITY AND PRIVACY, 2024, 7 (04):
  • [32] Machine learning-based intrusion detection algorithms
    Tang, Hua
    Cao, Zhuolin
    Journal of Computational Information Systems, 2009, 5 (06): : 1825 - 1831
  • [33] A Proposed Intrusion Detection Method Based on Machine Learning Used for Internet of Things Systems
    Karmous, Neder
    Aoueileyine, Mohamed Ould-Elhassen
    Abdelkader, Manel
    Youssef, Neji
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 3, 2022, 451 : 33 - 45
  • [34] A Taxonomy of Machine-Learning-Based Intrusion Detection Systems for the Internet of Things: A Survey
    Jamalipour, Abbas
    Murali, Sarumathi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9444 - 9466
  • [35] Research on Classification of Intrusion Detection in Internet of Things Network Layer Based on Machine Learning
    Liu, Jingyu
    Yang, Dongsheng
    Lian, Mengjia
    Li, Mingshi
    2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2021, : 106 - 110
  • [36] Machine learning based intrusion detection framework for detecting security attacks in internet of things
    V. Kantharaju
    H. Suresh
    M. Niranjanamurthy
    Syed Immamul Ansarullah
    Farhan Amin
    Amerah Alabrah
    Scientific Reports, 14 (1)
  • [37] Hardening of the Internet of Things by using an intrusion detection system based on deep learning
    Varastan, Bahman
    Jamali, Shahram
    Fotohi, Reza
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2465 - 2488
  • [38] Intrusion Detection System for Industrial Internet of Things Based on Deep Reinforcement Learning
    Tharewal, Sumegh
    Ashfaque, Mohammed Waseem
    Banu, Sayyada Sara
    Uma, Perumal
    Hassen, Samar Mansour
    Shabaz, Mohammad
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [39] Advancements in Intrusion Detection Systems for Internet of Things Using Machine Learning
    Ul Haq, Shahid
    Abbas, Ash Mohammad
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [40] Machine Learning Enabled Intrusion Detection for Edge Devices in the Internet of Things
    Alsharif, Maram
    Rawat, Danda B.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 361 - 367