A machine learning-based lightweight intrusion detection system for the internet of things

被引:28
|
作者
Fenanir S. [1 ]
Semchedine F. [2 ]
Baadache A. [3 ]
机构
[1] Department of Computer Science, Faculty of Exact Sciences, University of Bejaia, Bejaia
[2] Institute of Optics and Precision Mechanics (IOMP), University of Setif 1, Setif
[3] University of Alger 3, Algiers
来源
Revue d'Intelligence Artificielle | 2019年 / 33卷 / 03期
关键词
Anomaly detection; Feature selection; Internet of things (IoT); Intrusion detection system (IDS);
D O I
10.18280/ria.330306
中图分类号
学科分类号
摘要
The Internet of Things (IoT) is vulnerable to various attacks, due to the presence of tiny computing devices. To enhance the security of the IoT, this paper builds a lightweight intrusion detection system (IDS) based on two machine learning techniques, namely, feature selection and feature classification. The feature selection was realized by the filter-based method, thanks to its relatively low computing cost. The feature classification algorithm for our system was identified through comparison between logistic regression (LR), naive Bayes (NB), decision tree (DT), random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM) and multilayer perceptron (MLP). Finally, the DT algorithm was selected for our system, owing to its outstanding performance on several datasets. The research results provide a guide on choosing the optimal feature selection method for machine learning. © 2019 Lavoisier. All rights reserved.
引用
下载
收藏
页码:203 / 211
页数:8
相关论文
共 50 条
  • [21] FELIDS: Federated learning-based intrusion detection system for Internet of
    Friha, Othmane
    Ferrag, Mohamed Amine
    Shu, Lei
    Maglaras, Leandros
    Choo, Kim-Kwang Raymond
    Nafaa, Mehdi
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 165 : 17 - 31
  • [22] Intrusion detection based on machine learning in the internet of things, attacks and counter measures
    Rehman, Eid
    Haseeb-ud-Din, Muhammad
    Malik, Arif Jamal
    Khan, Tehmina Karmat
    Abbasi, Aaqif Afzaal
    Kadry, Seifedine
    Khan, Muhammad Attique
    Rho, Seungmin
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 8890 - 8924
  • [23] Utilizing Blockchain for Distributed Machine Learning based Intrusion Detection in Internet of Things
    Cheema, Muhammad Asaad
    Qureshi, Hassaan Khaliq
    Chrysostomou, Chrysostomos
    Lestas, Marios
    16TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2020), 2020, : 429 - 435
  • [24] Survey of Machine Learning based intrusion detection methods for Internet of Medical Things
    Si-Ahmed, Ayoub
    Al-Garadi, Mohammed Ali
    Boustia, Narhimene
    APPLIED SOFT COMPUTING, 2023, 140
  • [25] Machine Learning Explainability for Intrusion Detection in the Industrial Internet of Things
    Ahakonye L.A.C.
    Nwakanma C.I.
    Lee J.M.
    Kim D.-S.
    IEEE Internet of Things Magazine, 2024, 7 (03): : 68 - 74
  • [26] Machine Learning-Based Intrusion Detection System For Healthcare Data
    Balyan, Amit Kumar
    Ahuja, Sachin
    Sharma, Sanjeev Kumar
    Lilhore, Umesh Kumar
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 290 - 294
  • [27] A lightweight intelligent intrusion detection system for industrial internet of things using deep learning algorithm
    Mendonca, Robson V.
    Silva, Juan C.
    Rosa, Renata L.
    Saadi, Muhammad
    Rodriguez, Demostenes Z.
    Farouk, Ahmed
    EXPERT SYSTEMS, 2022, 39 (05)
  • [28] An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning
    Othman, Trifa S.
    Abdullah, Saman M.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2023, 11 (01): : 126 - 137
  • [29] A comprehensive survey on deep learning-based intrusion detection systems in Internet of Things (IoT)
    Al-Haija, Qasem Abu
    Droos, Ayat
    EXPERT SYSTEMS, 2024,
  • [30] Explainable Deep Learning-Based Feature Selection and Intrusion Detection Method on the Internet of Things
    Chen, Xuejiao
    Liu, Minyao
    Wang, Zixuan
    Wang, Yun
    SENSORS, 2024, 24 (16)