A machine learning-based lightweight intrusion detection system for the internet of things

被引:28
|
作者
Fenanir S. [1 ]
Semchedine F. [2 ]
Baadache A. [3 ]
机构
[1] Department of Computer Science, Faculty of Exact Sciences, University of Bejaia, Bejaia
[2] Institute of Optics and Precision Mechanics (IOMP), University of Setif 1, Setif
[3] University of Alger 3, Algiers
来源
Revue d'Intelligence Artificielle | 2019年 / 33卷 / 03期
关键词
Anomaly detection; Feature selection; Internet of things (IoT); Intrusion detection system (IDS);
D O I
10.18280/ria.330306
中图分类号
学科分类号
摘要
The Internet of Things (IoT) is vulnerable to various attacks, due to the presence of tiny computing devices. To enhance the security of the IoT, this paper builds a lightweight intrusion detection system (IDS) based on two machine learning techniques, namely, feature selection and feature classification. The feature selection was realized by the filter-based method, thanks to its relatively low computing cost. The feature classification algorithm for our system was identified through comparison between logistic regression (LR), naive Bayes (NB), decision tree (DT), random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM) and multilayer perceptron (MLP). Finally, the DT algorithm was selected for our system, owing to its outstanding performance on several datasets. The research results provide a guide on choosing the optimal feature selection method for machine learning. © 2019 Lavoisier. All rights reserved.
引用
下载
收藏
页码:203 / 211
页数:8
相关论文
共 50 条
  • [1] Federated learning-based intrusion detection system for Internet of Things
    Najet Hamdi
    International Journal of Information Security, 2023, 22 : 1937 - 1948
  • [2] Federated learning-based intrusion detection system for Internet of Things
    Hamdi, Najet
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1937 - 1948
  • [3] Internet of Things: A survey on machine learning-based intrusion detection approaches
    da Costa, Kelton A. P.
    Papa, Joao P.
    Lisboa, Celso O.
    Munoz, Roberto
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 151 : 147 - 157
  • [4] Toward Improved Machine Learning-Based Intrusion Detection for Internet of Things Traffic
    Alkadi, Sarah
    Al-Ahmadi, Saad
    Ben Ismail, Mohamed Maher
    COMPUTERS, 2023, 12 (08)
  • [5] A machine learning-based intrusion detection for detecting internet of things network attacks
    Saheed, Yakub Kayode
    Abiodun, Aremu Idris
    Misra, Sanjay
    Holone, Monica Kristiansen
    Colomo-Palacios, Ricardo
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 9395 - 9409
  • [6] A Machine Learning Based Intrusion Detection System for Mobile Internet of Things
    Amouri, Amar
    Alaparthy, Vishwa T.
    Morgera, Salvatore D.
    SENSORS, 2020, 20 (02)
  • [7] A federated learning-based zero trust intrusion detection system for Internet of Things
    Javeed, Danish
    Saeed, Muhammad Shahid
    Adil, Muhammad
    Kumar, Prabhat
    Jolfaei, Alireza
    AD HOC NETWORKS, 2024, 162
  • [8] Deep Learning-Based Network Intrusion Detection System for Internet of Medical Things
    Ravi V.
    Pham T.D.
    Alazab M.
    IEEE Internet of Things Magazine, 2023, 6 (02): : 50 - 54
  • [9] Machine Learning Based Network Intrusion Detection System for Internet of Things Cybersecurity
    Molcer, Piroska Stanic
    Pejic, Aleksandar
    Gulaci, Kristian
    Szalma, Reka
    SECURITY-RELATED ADVANCED TECHNOLOGIES IN CRITICAL INFRASTRUCTURE PROTECTION: THEORETICAL AND PRACTICAL APPROACH, 2022, : 95 - 110
  • [10] An Intrusion Detection System for the Internet of Things Based on Machine Learning: Review and Challenges
    Adnan, Ahmed
    Muhammed, Abdullah
    Abd Ghani, Abdul Azim
    Abdullah, Azizol
    Hakim, Fahrul
    SYMMETRY-BASEL, 2021, 13 (06):