An inception V3 approach for malware classification using machine learning and transfer learning

被引:3
|
作者
Ahmed M. [1 ]
Afreen N. [1 ]
Ahmed M. [1 ]
Sameer M. [2 ]
Ahamed J. [3 ]
机构
[1] Jamia Millia Islamia, New Delhi
[2] National Institute of Technology Patna, Bihar
[3] Maulana Azad National Urdu University, Hyderabad
[4] Indian Institute of Technology, Delhi
关键词
Artificial neural network; Convolutional neural network; InceptionV3; Logistic regression; Long short term memory; Microsoft BIG15;
D O I
10.1016/j.ijin.2022.11.005
中图分类号
学科分类号
摘要
Malware instances have been extremely used for illegitimate purposes, and new variants of malware are observed every day. Machine learning in network security is one of the prime areas of research today because of its performance and has shown tremendous growth in the last decade. In this paper, we formulate the malware signature as a 2D image representation and leverage deep learning approaches to characterize the signature of malware contained in BIG15 dataset across nine classes. The current research compares the performance of various machine learning and deep learning technologies towards malware classification such as Logistic Regression (LR), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), transfer learning on CNN and Long Short Term Memory (LSTM). The transfer learning approach using InceptionV3 resulted in a good performance with respect to the compared models like LSTM with a classification accuracy of 98.76% on the test dataset and 99.6% on the train dataset. © 2022 The Authors
引用
收藏
页码:11 / 18
页数:7
相关论文
共 50 条
  • [31] Transfer Learning for Malware Multi-Classification
    Al Kadri, Mohamad
    Nassar, Mohamed
    Safa, Haidar
    IDEAS '19: PROCEEDINGS OF THE 23RD INTERNATIONAL DATABASE APPLICATIONS & ENGINEERING SYMPOSIUM (IDEAS 2019), 2019, : 151 - 157
  • [32] Selective Targeted Transfer Learning for Malware Classification
    Aggarwal, Priyanka
    Ahamed, Sayyed F.
    Shetty, Sachin
    Freeman, Laura J.
    Proceedings - 2021 3rd IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications, TPS-ISA 2021, 2021, : 114 - 120
  • [33] High Performance Classification of Android Malware Using Ensemble Machine Learning
    Ouk, Pagnchakneat C.
    Pak, Wooguil
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 381 - 398
  • [34] Zero-Day Malware Classification and Detection Using Machine Learning
    Kumar J.
    Rajendran B.
    Sudarsan S.D.
    SN Computer Science, 5 (1)
  • [35] Malware Family Classification using Active Learning by Learning
    Chen, Chin-Wei
    Su, Ching-Hung
    Lee, Kun-Wei
    Bair, Ping-Hao
    2020 22ND INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): DIGITAL SECURITY GLOBAL AGENDA FOR SAFE SOCIETY!, 2020, : 590 - 595
  • [36] MALWARE CLASSIFICATION USING DEEP LEARNING
    Lo, Cheng-Hsiang
    Liu, Ta-Che
    Liu, I-Hsien
    Li, Jung-Shian
    Liu, Chuan-Gang
    Li, Chu-Fen
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 126 - 129
  • [37] Malware Detection Using Machine Learning
    Kumar, Ajay
    Abhishek, Kumar
    Shah, Kunjal
    Patel, Divy
    Jain, Yash
    Chheda, Harsh
    Nerurka, Pranav
    KNOWLEDGE GRAPHS AND SEMANTIC WEB, KGSWC 2020, 2020, 1232 : 61 - 71
  • [38] Using Federated Learning on Malware Classification
    Lin, Kuang-Yao
    Huang, Wei-Ren
    2020 22ND INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): DIGITAL SECURITY GLOBAL AGENDA FOR SAFE SOCIETY!, 2020, : 585 - 589
  • [39] Data Augmentation of Minority Class with Transfer Learning for Classification of Imbalanced Breast Cancer Dataset Using Inception-V3
    Saini, Manisha
    Susan, Seba
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 409 - 420
  • [40] Brain Tumor Classification With Inception Network Based Deep Learning Model Using Transfer Learning
    Soumik, Mohd Farhan Israk
    Hossain, Md Ali
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1018 - 1021