An inception V3 approach for malware classification using machine learning and transfer learning

被引:3
|
作者
Ahmed M. [1 ]
Afreen N. [1 ]
Ahmed M. [1 ]
Sameer M. [2 ]
Ahamed J. [3 ]
机构
[1] Jamia Millia Islamia, New Delhi
[2] National Institute of Technology Patna, Bihar
[3] Maulana Azad National Urdu University, Hyderabad
[4] Indian Institute of Technology, Delhi
关键词
Artificial neural network; Convolutional neural network; InceptionV3; Logistic regression; Long short term memory; Microsoft BIG15;
D O I
10.1016/j.ijin.2022.11.005
中图分类号
学科分类号
摘要
Malware instances have been extremely used for illegitimate purposes, and new variants of malware are observed every day. Machine learning in network security is one of the prime areas of research today because of its performance and has shown tremendous growth in the last decade. In this paper, we formulate the malware signature as a 2D image representation and leverage deep learning approaches to characterize the signature of malware contained in BIG15 dataset across nine classes. The current research compares the performance of various machine learning and deep learning technologies towards malware classification such as Logistic Regression (LR), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), transfer learning on CNN and Long Short Term Memory (LSTM). The transfer learning approach using InceptionV3 resulted in a good performance with respect to the compared models like LSTM with a classification accuracy of 98.76% on the test dataset and 99.6% on the train dataset. © 2022 The Authors
引用
收藏
页码:11 / 18
页数:7
相关论文
共 50 条
  • [21] A lightweight machine learning methods for malware classification
    Farfoura, Mahmoud E.
    Mashal, Ibrahim
    Alkhatib, Ahmad
    Batyha, Radwan M.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):
  • [22] Machine learning aided Android malware classification
    Milosevic, Nikola
    Dehghantanha, Ali
    Choo, Kitn-Kwang Raymond
    COMPUTERS & ELECTRICAL ENGINEERING, 2017, 61 : 266 - 274
  • [23] Detecting Malware with Classification Machine Learning Techniques
    Yusof, Mohd Azahari Mohd
    Abdullah, Zubaile
    Ali, Firkhan Ali Hamid
    Sukri, Khairul Amin Mohamad
    Hussain, Hanizan Shaker
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 167 - 172
  • [24] Malware Detection and Classification with Machine Learning Algorithms
    Kumar, R. Vinoth
    Islam, Md Mojahidul
    Apon, Abir Hossain
    Prantha, C. S.
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 5, SMARTCOM 2024, 2024, 949 : 143 - 158
  • [25] Malware Classification System Based on Machine Learning
    Qu Wei
    Shi Xiao
    Li Dongbao
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 647 - 652
  • [26] Transfer Representation Learning using Inception-V3 for the Detection of Masses in Mammography
    Mednikov, Y.
    Nehemia, S.
    Zheng, B.
    Benzaquen, O.
    Lederman, D.
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2587 - 2590
  • [27] Recognition of human skin diseases using inception-V3 with transfer learning
    Mamun M.A.
    Kabir M.S.
    Akter M.
    Uddin M.S.
    International Journal of Information Technology, 2022, 14 (6) : 3145 - 3154
  • [28] Malware Classification Using Few-Shot Learning Approach
    Alfarsi, Khalid
    Rasheed, Saim
    Ahmad, Iftikhar
    INFORMATION, 2024, 15 (11)
  • [29] A Deep Learning Approach to the Malware Classification Problem using Autoencoders
    Pinto, Dhiego Ramos
    Duarte, Julio Cesar
    Sant'Ana, Ricardo
    PROCEEDINGS OF THE XV BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS, SBSI 2019: Complexity on Modern Information Systems, 2019,
  • [30] Selective Targeted Transfer Learning for Malware Classification
    Aggarwal, Priyanka
    Ahamed, Sayyed F.
    Shetty, Sachin
    Freeman, Laura J.
    2021 THIRD IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2021), 2021, : 114 - 120