Use of machine learning techniques on airborne geophysical data for mineral resources exploration in Burkina Faso

被引:0
|
作者
Bournas N. [1 ]
Touré A. [2 ,3 ]
Balboné M. [2 ,3 ]
Zagré P.S. [2 ,3 ]
Ouédraogo A. [3 ]
Khaled K. [1 ]
Prikhodko A. [1 ]
Legault J. [1 ]
机构
[1] Geotech Ltd, Aurora, ON
关键词
airborne geophysics; Burkina Faso; machine learning; maximum likelihood classifier;
D O I
10.1080/22020586.2019.12072949
中图分类号
学科分类号
摘要
Recent advances in development of automated tools and machine learning algorithms based on artificial intelligence (AI) have revolutionized our interpretation approach of big data by making it faster, more objective and more reliable than tedious manual processes. In this paper, we show results derived from machine learning applications to the recently acquired high-resolution airborne geophysical data of Burkina Faso. The results are represented as country-wide prospectivity maps for various mineral resources including gold, uranium, base metals and strategic metals. The new mapping products indicate that Burkina Faso has a diversified and significant mineral potential. © 2019, Taylor and Francis. All rights reserved.
引用
收藏
页码:1 / 4
页数:3
相关论文
共 50 条
  • [31] STATISTICAL TECHNIQUES APPLIED TO BOREHOLE GEOPHYSICAL-DATA IN GOLD EXPLORATION
    URBANCIC, TI
    BAILEY, RC
    [J]. GEOPHYSICAL PROSPECTING, 1988, 36 (07) : 752 - 771
  • [32] RECENT TRENDS IN GEOLOGICAL-GEOPHYSICAL EXPLORATION, AND METHODS OF IMPROVING THE USE OF GEOPHYSICAL DATA
    COFFIN, RC
    [J]. AAPG BULLETIN-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS, 1946, 30 (05): : 748 - 748
  • [33] Geophysical Contributions to Gold Exploration in Western Mali According to Airborne Electromagnetic Data Interpretations
    Kone, Adama Youssouf
    Nasr, Imen Hamdi
    Traore, Baco
    Amiri, Adnen
    Inoubli, Mohamed Hedi
    Sangare, Souleymane
    Qaysi, Saleh
    [J]. MINERALS, 2021, 11 (02) : 1 - 15
  • [34] RECENT TRENDS IN GEOLOGICAL-GEOPHYSICAL EXPLORATION AND METHODS OF IMPROVING USE OF GEOPHYSICAL DATA
    COFFIN, RC
    [J]. AAPG BULLETIN-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS, 1946, 30 (12): : 2013 - 2033
  • [35] A Comprehensive Exploration to the Machine Learning Techniques for Diabetes Identification
    Wei, Sidong
    Zhao, Xuejiao
    Miao, Chunyan
    [J]. 2018 IEEE 4TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2018, : 291 - 295
  • [36] Exploration of Biodegradable Substances Using Machine Learning Techniques
    Elsayad, Alaa M.
    Zeghid, Medien
    Ahmed, Hassan Yousif
    Elsayad, Khaled A.
    [J]. SUSTAINABILITY, 2023, 15 (17)
  • [37] An exploration on text classification using machine learning techniques
    Athanasios, Tzimourtas
    Spyros, Bakalakos
    Panagiota, Tselenti
    Athanasios, Voulodimos
    [J]. 25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 247 - 249
  • [38] Airborne particulate matter measurement and prediction with machine learning techniques
    Iwaszenko, Sebastian
    Smolinski, Adam
    Grzanka, Marcin
    Skowronek, Tomasz
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] Injury Prediction for Canadian Mineral Exploration Using Machine Learning
    Saffarvarkiani, Elmira
    Passi, Kalpdrum
    Godwin, Alison
    [J]. 2024 IEEE CONFERENCE ON COGNITIVE AND COMPUTATIONAL ASPECTS OF SITUATION MANAGEMENT, COGSIMA, 2024, : 127 - 131
  • [40] Rapid integration of large airborne geophysical data suites using a fuzzy partitioning cluster algorithm: a tool for geological mapping and mineral exploration targeting
    Paasche, Hendrik
    Eberle, Detlef G.
    [J]. EXPLORATION GEOPHYSICS, 2009, 40 (03) : 277 - 287