Use of machine learning techniques on airborne geophysical data for mineral resources exploration in Burkina Faso

被引:0
|
作者
Bournas N. [1 ]
Touré A. [2 ,3 ]
Balboné M. [2 ,3 ]
Zagré P.S. [2 ,3 ]
Ouédraogo A. [3 ]
Khaled K. [1 ]
Prikhodko A. [1 ]
Legault J. [1 ]
机构
[1] Geotech Ltd, Aurora, ON
关键词
airborne geophysics; Burkina Faso; machine learning; maximum likelihood classifier;
D O I
10.1080/22020586.2019.12072949
中图分类号
学科分类号
摘要
Recent advances in development of automated tools and machine learning algorithms based on artificial intelligence (AI) have revolutionized our interpretation approach of big data by making it faster, more objective and more reliable than tedious manual processes. In this paper, we show results derived from machine learning applications to the recently acquired high-resolution airborne geophysical data of Burkina Faso. The results are represented as country-wide prospectivity maps for various mineral resources including gold, uranium, base metals and strategic metals. The new mapping products indicate that Burkina Faso has a diversified and significant mineral potential. © 2019, Taylor and Francis. All rights reserved.
引用
收藏
页码:1 / 4
页数:3
相关论文
共 50 条
  • [21] Machine Learning-Based Mapping for Mineral Exploration
    Zuo, Renguang
    Carranza, Emmanuel John M.
    [J]. MATHEMATICAL GEOSCIENCES, 2023, 55 (07) : 891 - 895
  • [22] Unveiling the mineral resources and structural patterns in the Middle Benue Trough: a comprehensive exploration using airborne magnetic and radiometric data
    Ekwok, Stephen E.
    George, Anthony M.
    Omori, Asuquo A.
    Abdelrahman, Kamal
    Ugar, Samuel I.
    Andras, Peter
    Morphy, Morod I.
    Akpan, Anthony E.
    Eldosouky, Ahmed M.
    [J]. GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [23] Introduction to special issue on machine learning applications in geophysical exploration and monitoring
    bin Waheed, Umair
    Di, Haibin
    Sun, Jiajia
    Angus, Doug
    [J]. GEOPHYSICAL PROSPECTING, 2024, 72 (01) : 3 - 6
  • [24] Mineral Exploration Using Modern Data Mining Techniques
    Barnett, Colin T.
    Williams, Peter M.
    [J]. WEALTH CREATION IN THE MINERALS INDUSTRY: INTEGRATING SCIENCE, BUSINESS, AND EDUCATION, 2006, 12 : 295 - +
  • [25] Integration of ASTER and airborne geophysical data for mineral exploration and environmental mapping: a case study, Gabal Dara, North Eastern Desert, Egypt
    Kh. Gemail
    N. M. Abd-El Rahman
    B. M. Ghiath
    R. N. Aziz
    [J]. Environmental Earth Sciences, 2016, 75
  • [26] Integration of ASTER and airborne geophysical data for mineral exploration and environmental mapping: a case study, Gabal Dara, North Eastern Desert, Egypt
    Gemail, Kh.
    Abd-El Rahman, N. M.
    Ghiath, B. M.
    Aziz, R. N.
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (07)
  • [27] Luminescence techniques as a low-cost geophysical tool in mineral exploration: Some examples
    Dhana Raju, R.
    [J]. International Journal of Earth Sciences and Engineering, 2012, 5 (06): : 1472 - 1480
  • [28] Introduction to Geophysical Exploration Data Denoising using Deep Learning
    Caesary, Desy
    Cho, AHyun
    Yu, Huieun
    Joung, Inseok
    Song, Seo Young
    Choi, Sung Oh
    Kim, Bitnarae
    Nam, Myung Jin
    [J]. GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2020, 23 (03): : 117 - 130
  • [29] Use of administrative data to estimate mass vaccination campaign coverage, Burkina Faso, 1999
    Zuber, PLF
    Yaméogo, KR
    Yaméogo, A
    Otten, MW
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2003, 187 : S86 - S90
  • [30] USE OF EXPLORATION DATA FOR IMPROVED MINERAL RECOVERY
    PANAGOPOULOS, C
    [J]. TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION A-MINING INDUSTRY, 1983, 92 (APR): : A90 - A92