Use of machine learning techniques on airborne geophysical data for mineral resources exploration in Burkina Faso

被引:0
|
作者
Bournas N. [1 ]
Touré A. [2 ,3 ]
Balboné M. [2 ,3 ]
Zagré P.S. [2 ,3 ]
Ouédraogo A. [3 ]
Khaled K. [1 ]
Prikhodko A. [1 ]
Legault J. [1 ]
机构
[1] Geotech Ltd, Aurora, ON
关键词
airborne geophysics; Burkina Faso; machine learning; maximum likelihood classifier;
D O I
10.1080/22020586.2019.12072949
中图分类号
学科分类号
摘要
Recent advances in development of automated tools and machine learning algorithms based on artificial intelligence (AI) have revolutionized our interpretation approach of big data by making it faster, more objective and more reliable than tedious manual processes. In this paper, we show results derived from machine learning applications to the recently acquired high-resolution airborne geophysical data of Burkina Faso. The results are represented as country-wide prospectivity maps for various mineral resources including gold, uranium, base metals and strategic metals. The new mapping products indicate that Burkina Faso has a diversified and significant mineral potential. © 2019, Taylor and Francis. All rights reserved.
引用
收藏
页码:1 / 4
页数:3
相关论文
共 50 条
  • [1] Use of high resolution SAR data for the monitoring of water resources in Burkina Faso
    Ciervo, F.
    Di Martino, G.
    Iodice, A.
    Koussoube, Y.
    Papa, M. N.
    Riccio, D.
    Ruello, G.
    Zinno, I.
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XI, 2011, 8179
  • [2] Exploration of Feature Engineering Techniques and Unsupervised Machine Learning Clustering Algorithms for Geophysical Data on Levees
    Russo, Brittany M.
    Athanasopoulos-Zekkos, Adda
    [J]. GEO-CONGRESS 2024: GEOTECHNICAL DATA ANALYSIS AND COMPUTATION, 2024, 352 : 454 - 463
  • [3] Predicting malaria epidemics in Burkina Faso with machine learning
    Harvey, David
    Valkenburg, Wessel
    Amara, Amara
    [J]. PLOS ONE, 2021, 16 (06):
  • [4] AIRBORNE GEOPHYSICAL REMOTE SENSORS FOR MINERAL AND WATER RESOURCE EXPLORATION
    MACDOWAL.J
    [J]. AERONAUTICAL JOURNAL, 1969, 73 (703): : R59 - +
  • [5] Machine learning: A new approach to intelligent exploration of seafloor mineral resources
    Liu, Yang
    Li, Sanzhong
    Zhong, Shihua
    Guo, Guanghui
    Liu, Jiaqing
    Niu, Jinghui
    Xue, Zimeng
    Zhou, Jianping
    Dong, Hao
    Suo, Yanhui
    [J]. Earth Science Frontiers, 2024, 31 (03) : 520 - 529
  • [6] GEOPHYSICAL LOGGING TECHNIQUES IN MINERAL EXPLORATION DRILL HOLES
    ZABLOCKI, CJ
    [J]. GEOPHYSICS, 1970, 35 (06) : 1164 - &
  • [7] Mineral potential evaluation based on airborne geophysical data
    Chung, Chang-Jo
    Keating, Pierre B.
    [J]. EXPLORATION GEOPHYSICS, 2002, 33 (01) : 28 - 34
  • [8] Land management and sustainable use of land resources in the case of Burkina Faso
    Bazame, Rodrigue
    Tanrivermis, Harun
    Kapusuz, Yunus Emre
    [J]. LAND DEGRADATION & DEVELOPMENT, 2019, 30 (06) : 608 - 621
  • [9] Using machine learning techniques for exploration and classification of laboratory data
    Trulson, Inga
    Holdenrieder, Stefan
    Hoffmann, Georg
    [J]. JOURNAL OF LABORATORY MEDICINE, 2024,
  • [10] A review of machine learning in processing remote sensing data for mineral exploration
    Shirmard, Hojat
    Farahbakhsh, Ehsan
    Muller, R. Dietmar
    Chandra, Rohitash
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 268