3D printing of HA / PCL composite tissue engineering scaffolds

被引:122
|
作者
Jiao Z. [1 ]
Luo B. [1 ]
Xiang S. [1 ]
Ma H. [1 ]
Yu Y. [1 ]
Yang W. [1 ]
机构
[1] State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing
关键词
Composites; Fused deposition modeling FDM; Hydroxyapatite; Mechanical properties; Polycaprolactone; Porosity; Tissue engineering scaffolds;
D O I
10.1016/j.aiepr.2019.09.003
中图分类号
学科分类号
摘要
Here, the internal structure and mechanical properties of the hydroxyapatite/polycaprolactone scaffolds, prepared by fused deposition modeling (FDM) technique, were explored. Using hydroxyapatite (HA) and polycaprolactone (PCL) as raw materials, nano-HA/PCL and micro-HA/PCL that composite with 20 wt% HA were prepared by melt blending technology, and HA/PCL composite tissue engineering scaffolds were prepared by self-developed melt differential FDM 3D printer. From the observation under microscope, it was found that the prepared nano-HA/PCL and micro-HA/PCL tissue engineering scaffolds have uniformly distributed and interconnected nearly rectangular pores. By observing the cross-sectional view of the nano-HA/PCL scaffold and the micro-HA/PCL scaffold, it is known that the HA particles in the nano-HA/PCL scaffold are evenly distributed and the HA particles in the micro-HA/PCL scaffold are agglomerated, which attribute nano-HA/PCL scaffolds with higher tensile strength and flexural strength than the micro-HA/PCL scaffolds. The tensile strength and flexural strength of the nano-HA/PCL specimens were 23.29 MPa and 21.39 MPa, respectively, which were 26.0% and 33.1% higher than those of the pure PCL specimens. Therefore, the bioactive nano-HA/PCL composite scaffolds prepared by melt differential FDM 3D printers should have broader application prospects in bone tissue engineering. © 2019 Kingfa SCI. & TECH. CO., LTD.
引用
收藏
页码:196 / 202
页数:6
相关论文
共 50 条
  • [31] Microscale electrohydrodynamic printing of biomimetic PCL/nHA composite scaffolds for bone tissue engineering
    Qu, Xiaoli
    Xia, Peng
    He, Jiankang
    Li, Dichen
    MATERIALS LETTERS, 2016, 185 : 554 - 557
  • [32] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Xu, Zhenyu
    Li, Ke
    Zhou, Kui
    Li, Shuiyuan
    Chen, Hongwei
    Zeng, Jiaqi
    Hu, Rugang
    FIBERS AND POLYMERS, 2023, 24 (01) : 275 - 283
  • [33] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Zhenyu Xu
    Ke Li
    Kui Zhou
    Shuiyuan Li
    Hongwei Chen
    Jiaqi Zeng
    Rugang Hu
    Fibers and Polymers, 2023, 24 : 275 - 283
  • [34] 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering
    Du, Xiaoyu
    Wei, Daixu
    Huang, Li
    Zhu, Min
    Zhang, Yaopeng
    Zhu, Yufang
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 103
  • [35] Biodegradable porous PCL/HA scaffolds for bone tissue engineering
    Kim, S. E.
    Hyun, Y. T.
    Chung, D. J.
    Heo, S. J.
    Shin, J. W.
    Lee, J. H.
    ASBM7: ADVANCED BIOMATERIALS VII, 2007, 342-343 : 77 - +
  • [36] Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
    Park, Su A.
    Lee, Su Hee
    Kim, Wan Doo
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2011, 34 (04) : 505 - 513
  • [37] Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering
    Su A Park
    Su Hee Lee
    Wan Doo Kim
    Bioprocess and Biosystems Engineering, 2011, 34 : 505 - 513
  • [38] Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering
    Wang, Fengze
    Tankus, Esma Bahar
    Santarella, Francesco
    Rohr, Nadja
    Sharma, Neha
    Martin, Sabrina
    Michalscheck, Mirja
    Maintz, Michaela
    Cao, Shuaishuai
    Thieringer, Florian M.
    POLYMERS, 2022, 14 (04)
  • [39] Enhancement of Mechanical and Biological Properties of PEEK/GO/HA Composite Scaffolds Fabricated Through 3D Printing and Sintered Process for Bone Tissue Engineering
    Karthic, M.
    Chockalingam, K.
    Vignesh, C.
    Nagarajan, K. J.
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2025, 64 (01): : 46 - 62
  • [40] 3D plotted PCL scaffolds for stem cell based bone tissue engineering
    Yilgor, Pinar
    Sousa, Rui A.
    Reis, Rui L.
    Hasirci, Nesrin
    Hasirci, Vasif
    MACROMOLECULAR SYMPOSIA, 2008, 269 : 92 - 99