Enhancement of Mechanical and Biological Properties of PEEK/GO/HA Composite Scaffolds Fabricated Through 3D Printing and Sintered Process for Bone Tissue Engineering

被引:1
|
作者
Karthic, M. [1 ]
Chockalingam, K. [1 ]
Vignesh, C. [1 ]
Nagarajan, K. J. [2 ]
机构
[1] Thiagarajar Coll Engn, Dept Mech Engn, Madurai, Tamil Nadu, India
[2] Thiagarajar Coll Engn, Dept Mechatron Engn, Madurai, India
来源
关键词
3D printing; bio composites; bone tissue engineering; Characterization; polyetheretherketone (PEEK); GRAPHENE OXIDE; IN-VITRO; CHITOSAN; GELATIN;
D O I
10.1080/25740881.2024.2386286
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, an attempt has been made to fabricate 3D polymer composite scaffolds through additive manufacturing and sintering techniques. Initially, PLA molds were printed using fused deposition modeling (FDM), and subsequently, these molds were filled with Polyetheretherketone/Graphene oxide/Hydroxyapatite (PEEK/GO/HA) slurries with different wt% of 0, 10, 20, 30, and 40 HA. The molds filled with the slurries were then placed in a sintering machine, where the PLA pattern was burned out. Finally, the desired scaffold was fabricated through the sintering process. The sintered scaffold surface morphology, chemistry, thermal properties, mechanical characteristics, and in vitro biological properties were evaluated. The compressive strength of PEEK/GO/HA with a ratio of 30% is a maximum of about 20.84 +/- 0.21 MPa. Moreover, biological studies of scaffolds were assessed using MTT Assay and AO-EB staining on NIH3T3 cells. According to the results, the biological properties of sintered scaffolds are similar to the trabecular bone tissue found in humans. The results reveal that the PEEK/GO/HA composite scaffold holds great potential and intriguing opportunities for bone regeneration application. [GRAPHICS]
引用
收藏
页码:46 / 62
页数:17
相关论文
共 50 条
  • [1] 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering
    Wang, Wenzhao
    Zhang, Boqing
    Li, Mingxin
    Li, Jun
    Zhang, Chengyun
    Han, Yanlong
    Wang, Li
    Wang, Kefeng
    Zhou, Changchun
    Liu, Lei
    Fan, Yujiang
    Zhang, Xingdong
    COMPOSITES PART B-ENGINEERING, 2021, 224
  • [2] 3D printing of HA / PCL composite tissue engineering scaffolds
    Jiao Z.
    Luo B.
    Xiang S.
    Ma H.
    Yu Y.
    Yang W.
    Advanced Industrial and Engineering Polymer Research, 2019, 2 (04): : 196 - 202
  • [3] 3D porous HA/TCP composite scaffolds for bone tissue engineering
    Zerankeshi, Meysam Mohammadi
    Mofakhami, Sohrab
    Salahinejad, Erfan
    CERAMICS INTERNATIONAL, 2022, 48 (16) : 22647 - 22663
  • [4] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [5] 3D printing of bioceramic/polycaprolactone composite scaffolds for bone tissue engineering
    Shie, Ming-You
    Lai, Chun-Che
    Chiang, Po-Han
    Chung, Han-Chi
    Ho, Chia-Che
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 142 - 145
  • [6] 3D Printing of PLLA/Biomineral Composite Bone Tissue Engineering Scaffolds
    Gang, Fangli
    Ye, Weilong
    Ma, Chunyang
    Wang, Wenting
    Xiao, Yi
    Liu, Chang
    Sun, Xiaodan
    MATERIALS, 2022, 15 (12)
  • [7] Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering
    Hassanajili, Shadi
    Karami-Pour, Ali
    Oryan, Ahmad
    Talaei-Khozani, Tahereh
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 104
  • [8] 3D printing of ceramic scaffolds for engineering of bone tissue
    Barinov S.M.
    Vakhrushev I.V.
    Komlev V.S.
    Mironov A.V.
    Popov V.K.
    Teterina A.Y.
    Fedotov A.Y.
    Yarygin K.N.
    Inorganic Materials: Applied Research, 2015, 6 (04) : 316 - 322
  • [9] 3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications
    Parupelli, Santosh Kumar
    Saudi, Sheikh
    Bhattarai, Narayan
    Desai, Salil
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 539 - 551
  • [10] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Barbara Leukers
    Hülya Gülkan
    Stephan H. Irsen
    Stefan Milz
    Carsten Tille
    Matthias Schieker
    Hermann Seitz
    Journal of Materials Science: Materials in Medicine, 2005, 16 : 1121 - 1124