Enhancement of Mechanical and Biological Properties of PEEK/GO/HA Composite Scaffolds Fabricated Through 3D Printing and Sintered Process for Bone Tissue Engineering

被引:1
|
作者
Karthic, M. [1 ]
Chockalingam, K. [1 ]
Vignesh, C. [1 ]
Nagarajan, K. J. [2 ]
机构
[1] Thiagarajar Coll Engn, Dept Mech Engn, Madurai, Tamil Nadu, India
[2] Thiagarajar Coll Engn, Dept Mechatron Engn, Madurai, India
来源
关键词
3D printing; bio composites; bone tissue engineering; Characterization; polyetheretherketone (PEEK); GRAPHENE OXIDE; IN-VITRO; CHITOSAN; GELATIN;
D O I
10.1080/25740881.2024.2386286
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, an attempt has been made to fabricate 3D polymer composite scaffolds through additive manufacturing and sintering techniques. Initially, PLA molds were printed using fused deposition modeling (FDM), and subsequently, these molds were filled with Polyetheretherketone/Graphene oxide/Hydroxyapatite (PEEK/GO/HA) slurries with different wt% of 0, 10, 20, 30, and 40 HA. The molds filled with the slurries were then placed in a sintering machine, where the PLA pattern was burned out. Finally, the desired scaffold was fabricated through the sintering process. The sintered scaffold surface morphology, chemistry, thermal properties, mechanical characteristics, and in vitro biological properties were evaluated. The compressive strength of PEEK/GO/HA with a ratio of 30% is a maximum of about 20.84 +/- 0.21 MPa. Moreover, biological studies of scaffolds were assessed using MTT Assay and AO-EB staining on NIH3T3 cells. According to the results, the biological properties of sintered scaffolds are similar to the trabecular bone tissue found in humans. The results reveal that the PEEK/GO/HA composite scaffold holds great potential and intriguing opportunities for bone regeneration application. [GRAPHICS]
引用
收藏
页码:46 / 62
页数:17
相关论文
共 50 条
  • [21] Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds
    Ren, Ya
    Zhang, Changru
    Liu, Yihao
    Kong, Weiqing
    Yang, Xue
    Niu, Haoyi
    Qiang, Lei
    Yang, Han
    Yang, Fei
    Wang, Chengwei
    Wang, Jinwu
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 10 (01) : 255 - 270
  • [22] Direct Integration of 3D Printing and Cryogel Scaffolds for Bone Tissue Engineering
    Olevsky, Levi M.
    Anup, Amritha
    Jacques, Mason
    Keokominh, Nadia
    Holmgren, Eric P.
    Hixon, Katherine R.
    BIOENGINEERING-BASEL, 2023, 10 (08):
  • [23] Calcium phosphate blossom for bone tissue engineering 3D printing scaffolds
    Popov, Vladimir K.
    Komlev, Vladimir S.
    Chichkov, Boris N.
    MATERIALS TODAY, 2014, 17 (02) : 96 - 97
  • [24] Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application
    Wang, Wenzhao
    Zhang, Boqing
    Zhao, Lihong
    Li, Mingxin
    Han, Yanlong
    Wang, Li
    Zhang, Zhengdong
    Li, Jun
    Zhou, Changchun
    Liu, Lei
    NANOTECHNOLOGY REVIEWS, 2021, 10 (01) : 1359 - 1373
  • [25] 3D printing of composite scaffolds based on polycaprolactone matrix reinforced with monticellite and akermanite for bone repair; mechanical and biological properties
    Kalali, Alma
    Rezaie, Hamidreza
    Hesaraki, Saeed
    Khodaei, Mohammad
    Teimoory, Farzaneh
    Saboori, Abdollah
    MATERIALIA, 2024, 34
  • [26] Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties
    Shi Zhe
    Liu Weiye
    Zhai Dong
    Xie Jianjun
    Zhu Yufang
    JOURNAL OF INORGANIC MATERIALS, 2023, 38 (07) : 763 - 770
  • [27] 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering
    Aki, Deniz
    Ulag, Songul
    Unal, Semra
    Sengor, Mustafa
    Ekren, Nazmi
    Lin, Chi-Chang
    Yilmazer, Hakan
    Ustundag, Cem Bulent
    Kalaskar, Deepak M.
    Gunduz, Oguzhan
    MATERIALS & DESIGN, 2020, 196
  • [28] Investigating mechanical properties of 3D printed porous titanium scaffolds for bone tissue engineering
    Yang, Jiajie
    Qin, Chao
    Lu, Jianhua
    Shi, Xiaojian
    Shi, Kaibing
    Cui, Yiyun
    Xiong, Xiaqing
    Wan, Keming
    Shen, Meihua
    MATERIALS RESEARCH EXPRESS, 2024, 11 (07)
  • [29] Material extrusion 3D printing of bioactive smart scaffolds for bone tissue engineering
    Sabahi, Nasim
    Roohani, Iman
    Wang, Chun H.
    Li, Xiaopeng
    ADDITIVE MANUFACTURING, 2025, 98
  • [30] 3D nanocomposite hydrogel scaffolds fabricated by rapid prototyping for bone tissue engineering
    Xu, Du-Liang
    Zhang, Jian-Guang
    Mo, Xiu-Mei
    Journal of Donghua University (English Edition), 2014, 31 (05) : 630 - 634