A broad study of machine learning and deep learning techniques for diabetic retinopathy based on feature extraction, detection and classification

被引:0
|
作者
Sangeetha K. [1 ]
Valarmathi K. [2 ]
Kalaichelvi T. [2 ,3 ]
Subburaj S. [4 ]
机构
[1] Dept Artificial Intelligence and Data Science, Panimalar Engineering College
[2] SRMIST Ramapuram Campus, Chennai
来源
Measurement: Sensors | 2023年 / 30卷
关键词
Coherence tomography images; Diabetes; Diabetesmellitus; Diabeticretinopathy; Fundus images; Non-proliferative; classification; Proliferative; Supervised learning; Un-supervisedlearning;
D O I
10.1016/j.measen.2023.100951
中图分类号
学科分类号
摘要
Diabetic Retinopathy (DR) is a micro vasculardisorder that affects the eyes and is a long term effectofDiabetesmellitus. The likelihood to develop diabetic retinopathy is directly proportional to the age and duration of the diabetes, as well as increase in the level of blood glucose level and fluctuation in blood pressure levels. A person who has diabetes has more probability to develop diabetic retinopathy. The ration of people with diabetes started to increase from 285 million in 2010 and will reach up to 439 million in the year of 2030.Out of the total number of people with Diabetic Retinopathy, approximately one-fourth of the people have vision-threatening disease. Earlier detection and classificationof Diabetic Retinopathy has to be taken much care in order to sustain a patient's vision. The diabetic Retinopathy may be classified into various stages like Mild non-proliferative retinopathy, Moderate nonproliferative retinopathy, severe nonproliferative Retinopathy and Proliferative diabetic retinopathy. Theproblem associated with the manual detection of diabetic retinopathy is that the processing time is high, effortconsumingandrequiresanophthalmologist to examine the eye retinal fund us images. The manual analysis includes Visual Acuity testing, Tonometry and Pupil dilation. The vision lost due to Diabetic retinopathy is sometimes irreparable. Hence there is a need for earlier detection and treatment to reduce the risk of blindness.Hence there are various automated methods of diabetic retinopathy screening that have made good progress using image classification, pattern recognition, and machine learning. The input to the automated image classification model can be the color fundus photography or optical Coherence tomography images. © 2023 The Authors
引用
收藏
相关论文
共 50 条
  • [41] Deep learning model using classification for diabetic retinopathy detection: an overview
    Muthusamy, Dharmalingam
    Palani, Parimala
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (07)
  • [42] Classification and feature extraction of biological signals using Machine Learning Techniques
    Ciocirlan, Marina
    Udrea, Andreea
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 780 - 784
  • [43] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Syed, Saba Raoof
    Durai, M. A. Saleem
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [44] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Saba Raoof Syed
    Saleem Durai M A
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [45] Classification of Diabetic Retinopathy Severity Using Deep Learning Techniques on Retinal Images
    Kumari, A. Aruna
    Bhagat, Avinash
    Henge, Santosh Kumar
    CYBERNETICS AND SYSTEMS, 2024,
  • [46] An Empiric Analysis of Wavelet-Based Feature Extraction on Deep Learning and Machine Learning Algorithms for Arrhythmia Classification
    Singh, Ritu
    Rajpal, Navin
    Mehta, Rajesh
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2021, 6 (06): : 25 - 34
  • [47] Feature Extraction Based on Deep Learning for Some Traditional Machine Learning Methods
    Cayir, Aykut
    Yenidogan, Isil
    Dag, Hasan
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 494 - 497
  • [48] LBP and Machine Learning for Diabetic Retinopathy Detection
    de la Calleja, Jorge
    Tecuapetla, Lourdes
    Auxilio Medina, Ma
    Barcenas, Everardo
    Urbina Najera, Argelia B.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2014, 2014, 8669 : 110 - 117
  • [49] Machine Learning based Lithographic Hotspot Detection with Critical-Feature Extraction and Classification
    Ding, Duo
    Wu, Xiang
    Ghosh, Joydeep
    Pan, David Z.
    2009 IEEE INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUIT DESIGN AND TECHNOLOGY, PROCEEDINGS, 2009, : 219 - 222
  • [50] Detection of Retinal Lesions Based on Deep Learning for Diabetic Retinopathy
    Maya, K., V
    Adarsh, K. S.
    2019 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES 2019), 2019,