SafeTPU: A Verifiably Secure Hardware Accelerator for Deep Neural Networks

被引:0
|
作者
Mera Collantes, Maria I. [1 ]
Ghodsi, Zahra [1 ]
Garg, Siddharth [1 ]
机构
[1] New York University, Department of Electrical and Computer Engineering, United States
来源
关键词
Area overhead - Fault injection attacks - Hardware accelerators - High probability - Interactive proofs - Secure computation - Space and time - State of the art;
D O I
9107564
中图分类号
学科分类号
摘要
26
引用
收藏
相关论文
共 50 条
  • [41] Towards Evaluating and Training Verifiably Robust Neural Networks
    Lyu, Zhaoyang
    Guo, Minghao
    Wu, Tong
    Xu, Guodong
    Zhang, Kehuan
    Lin, Dahua
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4306 - 4315
  • [42] PNeuro: a scalable energy-efficient programmable hardware accelerator for neural networks
    Carbon, A.
    Philippe, J-M.
    Bichler, O.
    Schmit, R.
    Tain, B.
    Briand, D.
    Ventroux, N.
    Paindavoine, M.
    Brousse, O.
    PROCEEDINGS OF THE 2018 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2018, : 1039 - 1044
  • [43] Towards designing a hardware accelerator for 3D convolutional neural networks
    Khan, Fatima Hameed
    Pasha, Muhammad Adeel
    Masud, Shahid
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 105
  • [44] Binaryware: A High-Performance Digital Hardware Accelerator for Binary Neural Networks
    Ryu, Sungju
    Oh, Youngtaek
    Kim, Jae-Joon
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2023, 31 (12) : 2137 - 2141
  • [45] RECOM: An Efficient Resistive Accelerator for Compressed Deep Neural Networks
    Ji, Houxiang
    Song, Linghao
    Jiang, Li
    Li, Ha
    Chen, Yiran
    PROCEEDINGS OF THE 2018 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2018, : 237 - 240
  • [46] High performance reconfigurable accelerator for deep convolutional neural networks
    Qiao R.
    Chen G.
    Gong G.
    Lu H.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (03): : 130 - 139
  • [47] Deep neural networks compiler for a trace-based accelerator
    Chang, Andre Xian Ming
    Zaidy, Aliasger
    Vitez, Marko
    Burzawa, Lukasz
    Culurciello, Eugenio
    JOURNAL OF SYSTEMS ARCHITECTURE, 2020, 102
  • [48] A Multi-Mode Accelerator for Pruned Deep Neural Networks
    Ardakani, Arash
    Condo, Carlo
    Gross, Warren J.
    2018 16TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2018, : 352 - 355
  • [49] Implementation of FPGA-based Accelerator for Deep Neural Networks
    Tsai, Tsung-Han
    Ho, Yuan-Chen
    Sheu, Ming-Hwa
    2019 IEEE 22ND INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2019,
  • [50] Hardware-Aware Softmax Approximation for Deep Neural Networks
    Geng, Xue
    Lin, Jie
    Zhao, Bin
    Kong, Anmin
    Aly, Mohamed M. Sabry
    Chandrasekhar, Vijay
    COMPUTER VISION - ACCV 2018, PT IV, 2019, 11364 : 107 - 122