Emotion detection in text using nested Long Short-Term Memory

被引:0
|
作者
Haryadi D. [1 ]
Kusuma G.P. [1 ]
机构
[1] Computer Science Department, BINUS Graduate Program, Bina Nusantara University, Jakarta
关键词
Emotion detection; Machine learning; Nested LSTM; Sentiment analysis; Text mining;
D O I
10.14569/ijacsa.2019.0100645
中图分类号
学科分类号
摘要
Abstract-Humans have the power to feel different types of emotions because human life is filled with many emotions. Human's emotion can be reflected through reading or writing a text. In recent years, studies on emotion detection through text has been developed. Most of the study is using a machine learning technique. In this paper, we classified 7 emotions such as anger, fear, joy, love, sadness, surprise, and thankfulness using deep learning technique that is Long Short-Term Memory (LSTM) and Nested Long Short-Term Memory (Nested LSTM). We have compared our results with Support Vector Machine (SVM). We have trained each model with 980,549 training data and tested with 144,160 testing data. Our experiments showed that Nested LSTM and LSTM give better performance than SVM to detect emotions in text. Nested LSTM gets the best accuracy of 99.167%, while LSTM gets the best performance in term of average precision at 99.22%, average recall at 98.86%, and f1-score at 99.04%. © 2019 International Journal of Advanced Computer Science and Applications.
引用
收藏
页码:351 / 357
页数:6
相关论文
共 50 条
  • [21] Long Short-Term Memory Description and its Application in Text Processing
    Skovajsova, Lenka
    2017 COMMUNICATION AND INFORMATION TECHNOLOGIES (KIT), 2017, : 136 - 139
  • [22] A method of automatic text summarisation based on long short-term memory
    Fang, Wei
    Jiang, TianXiao
    Jiang, Ke
    Zhang, Feihong
    Ding, Yewen
    Sheng, Jack
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 22 (01) : 39 - 49
  • [23] Reflective fiber fault detection and characterization using long short-term memory
    Abdelli, Khouloud
    Griesser, Helmut
    Ehrle, Peter
    Tropschug, Carsten
    Pachnicke, Stephan
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2021, 13 (10) : E32 - E41
  • [24] MALICIOUS LOGIN DETECTION USING LONG SHORT-TERM MEMORY WITH AN ATTENTION MECHANISM
    Wu, Yanna
    Liu, Fucheng
    Wen, Yu
    ADVANCES IN DIGITAL FORENSICS XVII, 2021, 612 : 157 - 173
  • [25] Novelty Detection of a Rolling Bearing using Long Short-Term Memory Autoencoder
    Asavalertpalakom, Sunithi
    Singhatanadgid, Pairod
    Ardsomang, Tutpol
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 169 - 172
  • [26] Anomaly Detection for Controller Area Networks Using Long Short-Term Memory
    Tanksale, Vinayak
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 1 : 253 - 265
  • [27] Deepfake Detection using Capsule Networks and Long Short-Term Memory Networks
    Mehra, Akul
    Spreeuwers, Luuk
    Strisciuglio, Nicola
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 407 - 414
  • [28] Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks
    Bukhari, Syed Basit Ali
    Mehmood, Khawaja Khalid
    Wadood, Abdul
    Park, Herie
    ENERGIES, 2021, 14 (18)
  • [29] Damage Detection in a Benchmark Structure Using Long Short-term Memory Networks
    Lin, Zhiwei
    Liu, Yonggui
    Zhou, Linren
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2300 - 2305
  • [30] Detection of Abnormal Network Traffic Using Bidirectional Long Short-Term Memory
    Thi Thanh N.N.
    Nguyen Q.H.
    Computer Systems Science and Engineering, 2023, 46 (01): : 491 - 504