LIP1 Regulates the Plant Circadian Oscillator by Modulating the Function of the Clock Component GIGANTEA

被引:0
|
作者
Hajdu, Anita [1 ,2 ,3 ]
Nyari, Dora [1 ,2 ,4 ]
Terecskei, Kata [2 ]
Gyula, Peter [5 ]
Adam, Eva [2 ,3 ]
Dobos, Orsolya [2 ]
Merai, Zsuzsanna [6 ]
Kozma-Bognar, Laszlo [1 ,2 ]
机构
[1] Univ Szeged, Fac Sci & Informat, Dept Genet, H-6726 Szeged, Hungary
[2] Inst Plant Biol, HUN REN Biol Res Ctr, H-6726 Szeged, Hungary
[3] Univ Szeged, Fac Med, Dept Med Genet, H-6720 Szeged, Hungary
[4] Univ Szeged, Fac Sci & Informat, Doctoral Sch Biol, H-6726 Szeged, Hungary
[5] Hungarian Univ Agr & Life Sci, Inst Genet & Biotechnol, H-2100 Godollo, Hungary
[6] Gregor Mendel Inst Mol Plant Biol GmbH, A-1030 Vienna, Austria
基金
奥地利科学基金会;
关键词
arabidopsis; circadian clock; GIGANTEA; small GTPase LIP1; TARGETED DEGRADATION; SALT STRESS; COMPLEX; PROTEIN; FAMILY; TOLERANCE; ZEITLUPE; RHYTHMS; ROLES; FKF1;
D O I
10.3390/cells13171503
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycles. The function of the oscillator relies on negative transcriptional/translational feedback loops operated by the so-called clock genes and the encoded clock proteins. Previously, we identified the small GTPase LIGHT INSENSITIVE PERIOD 1 (LIP1) as a circadian-clock-associated protein that regulates light input to the clock in the model plant Arabidopsis thaliana. We showed that LIP1 is also required for suppressing red and blue light-mediated photomorphogenesis, pavement cell shape determination and tolerance to salt stress. Here, we demonstrate that LIP1 is present in a complex of clock proteins GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB 1 (TOC1). LIP1 participates in this complex via GUANINE EX-CHANGE FACTOR 7. Analysis of genetic interactions proved that LIP1 affects the oscillator via modulating the function of GI. We show that LIP1 and GI independently and additively regulate photomorphogenesis and salt stress responses, whereas controlling cell shape and photoperiodic flowering are not shared functions of LIP1 and GI. Collectively, our results suggest that LIP1 affects a specific function of GI, possibly by altering binding of GI to downstream signalling components.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Geographic Variation of Plant Circadian Clock Function in Natural and Agricultural Settings
    Greenham, Kathleen
    Lou, Ping
    Puzey, Joshua R.
    Kumar, Ganesh
    Arnevik, Cindy
    Farid, Hany
    Willis, John H.
    McClung, C. Robertson
    JOURNAL OF BIOLOGICAL RHYTHMS, 2017, 32 (01) : 26 - 34
  • [32] The impact of chromatin dynamics on plant light responses and circadian clock function
    Barneche, Fredy
    Malapeira, Jordi
    Mas, Paloma
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (11) : 2895 - 2913
  • [33] The intrinsic circadian clock within the cardiomyocyte regulates myocardial efficiency and mitochondrial function
    Rennison, Julie H.
    Chandler, Margaret P.
    Moore, Michael W.
    Bray, Molly S.
    Shaw, Chad A.
    Dyck, Jason R.
    Chow, Chi-Wing
    Young, Martin E.
    CIRCULATION, 2007, 116 (16) : 35 - 35
  • [34] The circadian clock regulates neuronal maturation and function in the mPFC: Implications for bipolar disorder
    McClung, C. A.
    BIPOLAR DISORDERS, 2019, 21 : 23 - 24
  • [35] CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL Function Synergistically in the Circadian Clock of Arabidopsis
    Lu, Sheen X.
    Knowles, Stephen M.
    Andronis, Christos
    Ong, May S.
    Tobin, Elaine M.
    PLANT PHYSIOLOGY, 2009, 150 (02) : 834 - 843
  • [36] Achilles is a circadian clock-controlled gene that regulates immune function in Drosophila
    Li, Jiajia
    Terry, Erin E.
    Fejer, Edith
    Gamba, Diana
    Hartmann, Natalie
    Logsdon, Joseph
    Michalski, Daniel
    Rois, Lisa E.
    Scuderi, Maria J.
    Kunst, Michael
    Hughes, Michael E.
    BRAIN BEHAVIOR AND IMMUNITY, 2017, 61 : 127 - 136
  • [37] Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling
    Barrio-Alonso, Estibaliz
    Lituma, Pablo J.
    Notaras, Michael J.
    Albero, Robert
    Bouchekioua, Youcef
    Wayland, Natalie
    Stankovic, Isidora N.
    Jain, Tanya
    Gao, Sijia
    Calderon, Diany Paola
    Castillo, Pablo E.
    Colak, Dilek
    CELL REPORTS, 2023, 42 (04):
  • [38] The CRTC1-SIK1 Pathway Regulates Entrainment of the Circadian Clock
    Jagannath, Aarti
    Butler, Rachel
    Godinho, Sofia I. H.
    Couch, Yvonne
    Brown, Laurence A.
    Vasudevan, Sridhar R.
    Flanagan, Kevin C.
    Anthony, Daniel
    Churchill, Grant C.
    Wood, Matthew J. A.
    Steiner, Guido
    Ebeling, Martin
    Hossbach, Markus
    Wettstein, Joseph G.
    Duffield, Giles E.
    Gatti, Silvia
    Hankins, Mark W.
    Foster, Russell G.
    Peirson, Stuart N.
    CELL, 2013, 154 (05) : 1100 - 1111
  • [39] Protein phosphatase 4 controls circadian clock dynamics by modulating CLOCK/BMAL1 activity
    Klemz, Sabrina
    Wallach, Thomas
    Korge, Sandra
    Rosing, Mechthild
    Klemz, Roman
    Maier, Bert
    Fiorenza, Nicholas C.
    Kaymak, Irem
    Fritzsche, Anna K.
    Herzog, Erik D.
    Stanewsky, Ralf
    Kramer, Achim
    GENES & DEVELOPMENT, 2021, 35 (15-16) : 1161 - 1174
  • [40] O-GlcNAc Signaling Entrains the Circadian Clock by Modulating BMAL1/CLOCK Ubiquitination
    Yang, Xiaoyong
    Li, Min-Dian
    Ruan, Hai-Bin
    Hughes, Michael E.
    Lee, Jeong-Sang
    Singh, Jay P.
    Nitabach, Michael N.
    DIABETES, 2013, 62 : A489 - A489