Constructing Maximal Pipedreams of Double Grothendieck Polynomials

被引:0
|
作者
Chou, Chen-An [1 ]
Yu, Tianyi [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 03期
关键词
D O I
10.37236/12665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Pechenik, Speyer and Weigandt defined a statistic rajcode (<middle dot>) on permutations which characterizes the leading monomial in top degree components of double Grothendieck polynomials. Their proof is combinatorial: They showed there exists a unique pipedream of a permutation w with row weight rajcode (w) and column weight rajcode (w(-1)). They proposed the problem of finding a "direct recipe" for this pipedream. We solve this problem by providing an algorithm that constructs this pipedream via ladder moves.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Frozen pipes: lattice models for Grothendieck polynomials
    Brubaker, Ben
    Frechette, Claire
    Hardt, Andrew
    Tibor, Emily
    Weber, Katherine
    ALGEBRAIC COMBINATORICS, 2023, 6 (03):
  • [42] Refined dual Grothendieck polynomials, integrability, and the Schur measureRefined dual Grothendieck polynomials, integrability...K. Motegi, T. Scrimshaw
    Kohei Motegi
    Travis Scrimshaw
    Selecta Mathematica, 2025, 31 (3)
  • [43] POLYNOMIALS WITH MAXIMAL DERIVATIVE
    FISHER, SD
    JOURNAL D ANALYSE MATHEMATIQUE, 1972, 25 : 289 - &
  • [44] CONSTRUCTING ORTHOGONAL POLYNOMIALS
    Rhee, Noah
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2023, 35 (02) : 242 - 247
  • [45] Free-fermions and skew stable Grothendieck polynomials
    Iwao, Shinsuke
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (02) : 493 - 526
  • [46] Lattice polytopes from Schur and symmetric Grothendieck polynomials
    Bayer, Margaret
    Goeckner, Bennet
    Hong, Su Ji
    McAllister, Tyrrell
    Olsen, McCabe
    Pinckney, Casey
    Vega, Julianne
    Yip, Martha
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [47] Top-degree components of Grothendieck and Lascoux polynomials
    Pan, Jianping
    Yu, Tianyi
    ALGEBRAIC COMBINATORICS, 2024, 7 (01):
  • [48] Finite sum Cauchy identity for dual Grothendieck polynomials
    Lascoux, Alain
    Naruse, Hiroshi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (07) : 87 - 91
  • [49] Set-valued Rothe tableaux and Grothendieck polynomials
    Fan, Neil J.Y.
    Guo, Peter L.
    Advances in Applied Mathematics, 2021, 128
  • [50] Proof of a conjectured Mobius inversion formula for Grothendieck polynomials
    Pechenik, Oliver
    Satriano, Matthew
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (05):