Comparative Analysis of Open-Source Language Models in Summarizing Medical Text Data

被引:0
|
作者
Chen, Yuhao [1 ]
Wang, Zhimu [1 ]
Zulkernine, Farhana [1 ]
机构
[1] Queens Univ, Sch Comp, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Biomedical summarization; Large Language Model; Generative Model;
D O I
10.1109/ICDH62654.2024.00030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Unstructured text in medical notes and dialogues contains rich information. Recent advancements in Large Language Models (LLMs) have demonstrated superior performance in question answering and summarization tasks on unstructured text data, outperforming traditional text analysis approaches. However, there is a lack of scientific studies in the literature that methodically evaluate and report on the performance of different LLMs, specifically for domain-specific data such as medical chart notes. We propose an evaluation approach to analyze the performance of open-source LLMs such as Llama2 and Mistral for medical summarization tasks, using GPT-4 as an assessor. Our innovative approach to quantitative evaluation of LLMs can enable quality control, support the selection of effective LLMs for specific tasks, and advance knowledge discovery in digital health.
引用
收藏
页码:126 / 128
页数:3
相关论文
共 50 条
  • [31] GLYCOPAT: An open-source data analysis platform for individualized glycoproteome analysis
    Neelamegham, Sriram
    Gang, Liu
    Chi, Lo Y.
    GLYCOBIOLOGY, 2015, 25 (11) : 1282 - 1283
  • [32] PRINCIPLES OF CONSTRUCTION OF OPEN-SOURCE SOFTWARE FOR OCULOGRAPHY DATA ANALYSIS
    Marmalyuk, P. A.
    Zhegallo, A., V
    Yuryev, G. A.
    Panfilova, A. S.
    EKSPERIMENTALNAYA PSIKHOLOGIYA, 2015, 8 (01): : 127 - 144
  • [33] An open-source data acquisition platform for teaching vibration analysis
    Trujillo-Franco, Luis G.
    Abundis-Fong, Hugo F.
    Marin-Soriano, Juan C.
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2024,
  • [34] pyResearchInsights-An open-source Python']Python package for scientific text analysis
    Shetty, Sarthak J.
    Ramesh, Vijay
    ECOLOGY AND EVOLUTION, 2021, 11 (20): : 13920 - 13929
  • [35] Open-Source Chromatographic Data Analysis for Reaction Optimization and Screening
    Haas, Christian P.
    Luebbesmeyer, Maximilian
    Jin, Edward H.
    McDonald, Matthew A.
    Koscher, Brent A.
    Guimond, Nicolas
    Di Rocco, Laura
    Kayser, Henning
    Leweke, Samuel
    Niedenfuehr, Sebastian
    Nicholls, Rachel
    Greeves, Emily
    Barber, David M.
    Hillenbrand, Julius
    Volpin, Giulio
    Jensen, Klavs F.
    ACS CENTRAL SCIENCE, 2023, : 307 - 317
  • [36] Open-source data analysis and visualization software platform: SAGUARO
    Kim, Dae Wook
    Lewis, Benjamin J.
    Burge, James H.
    OPTICAL MANUFACTURING AND TESTING IX, 2011, 8126
  • [37] Open-Source Chromatographic Data Analysis for Reaction Optimization and Screening
    Haas, Christian P.
    Luebbesmeyer, Maximilian
    Jin, Edward H.
    McDonald, Matthew A.
    Koscher, Brent A.
    Guimond, Nicolas
    Di Rocco, Laura
    Kayser, Henning
    Leweke, Samuel
    Niedenfu, Sebastian
    Nicholls, Rachel
    Greeves, Emily
    Barber, David M.
    Hillenbrand, Julius
    Volpin, Giulio
    Jensen, Klavs F.
    ACS CENTRAL SCIENCE, 2023, 9 (02) : 307 - 317
  • [38] EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data
    Cantu, Daniel A.
    Wang, Bo
    Gongwer, Michael W.
    He, Cynthia X.
    Goel, Anubhuti
    Suresh, Anand
    Kourdougli, Nazim
    Arroyo, Erica D.
    Zeiger, William
    Portera-Cailliau, Carlos
    FRONTIERS IN NEURAL CIRCUITS, 2020, 14
  • [39] MightyScreen: An Open-Source Visualization Application for Screening Data Analysis
    Wang, Longfei
    Yang, Qin
    Jaimes, Adriana
    Wang, Tianyu
    Strobelt, Hendrik
    Chen, Jenny
    Sliz, Piotr
    SLAS DISCOVERY, 2018, 23 (02) : 218 - 223
  • [40] footPress: An Open-Source MATLAB Toolbox for Analysis of Pedobarography Data
    Rashid, Usman
    Signal, Nada
    Niazi, Imran Khan
    Taylor, Denise
    CONVERGING CLINICAL AND ENGINEERING RESEARCH ON NEUROREHABILITATION III, 2019, 21 : 361 - 364