Series arc-induced internal short circuit leading to thermal runaway in lithium-ion battery

被引:5
|
作者
Xu, Wenqiang [1 ,2 ]
Zhou, Kai [1 ]
Wang, Hewu [2 ]
Lu, Languang [2 ]
Wu, Yu [3 ]
Gao, Bin [1 ,2 ]
Shi, Chao [2 ]
Rui, Xinyu [2 ]
Wu, Xiaogang [2 ,4 ]
Li, Yalun [2 ,5 ]
机构
[1] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
[2] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[3] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[4] Hebei Univ Technol, Sch Elect Engn, Hebei 300401, Peoples R China
[5] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Series arc hazard; Battery thermal runaway; Experimental platform; Failure pathways; FAULT-DETECTION METHOD; DC; SYSTEMS;
D O I
10.1016/j.energy.2024.132999
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the widespread implementation of battery energy storage systems (BESSs), significant attention has been focused on issues involving electrical safety. The series arc hazard caused by loose connectors between batteries has become a serious problem. However, research findings for the evolution process of the series arc and the related hazard principle are still unclear. Therefore, in this study we focus on the series arc at the negative terminal of a 20 Ah prismatic lithium-ion battery, establish an experimental platform for the arc, and conduct research on the hazards process. Our results indicate that the arc can induce the thermal failure of the battery when the power supply voltage is 300 V and the circuit current is 15 A. Through a battery voltage analysis, computed tomography scans, and jellyroll disassembly, we uncover the evolution process and hazard laws of series arcs and clarify the failure pathways of arc-induced battery faults. The hotspots formed by arc melt the casing and cause electrolyte leakage. In addition, the heat transfer from the battery terminal to the jellyroll induces separator melting and internal short circuits in batteries. These cause an internal short circuit between the anode and the cathode, as well as combustion of the leaked electrolyte, which give rise to distinct thermal runaway behavior under different states of charge. By comparing runaway behavior with failures triggered by external heating, we clarify that the series arc is a novel risk factor that induces failure. This study addresses the gap in research related to arc effects on battery safety. This is crucial to the development of safe battery systems that do not present arc hazards.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Influencing factors of lithium-ion battery thermal runaway in confined space
    Liu, Jialong
    Zhang, Yun
    Zhou, Longfei
    Han, Chaoling
    He, Tengfei
    Wang, Zhirong
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [42] Numerical Study on the Inhibition Control of Lithium-Ion Battery Thermal Runaway
    Hu, Hao
    Xu, Xiaoming
    Sun, Xudong
    Li, Renzheng
    Zhang, Yangjun
    Fu, Jiaqi
    ACS OMEGA, 2020, 5 (29): : 18254 - 18261
  • [43] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):
  • [44] Computational Modelling of Thermal Runaway Propagation in Lithium-Ion Battery Systems
    Citarella, Martina
    Suzzi, Daniele
    Brunnsteiner, Bernhard
    Schiffbaenker, Paul
    Maier, Gernot
    Schneider, Juergen
    2019 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE (ITEC-INDIA), 2019,
  • [45] The critical characteristics and transition process of lithium-ion battery thermal runaway
    Huang, Peifeng
    Yao, Caixia
    Mao, Binbin
    Wang, Qingsong
    Sun, Jinhua
    Bai, Zhonghao
    ENERGY, 2020, 213
  • [46] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [47] Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules
    Karmakar, Avijit
    Zhou, Hanwei
    Vishnugopi, Bairav S.
    Mukherjee, Partha P.
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [48] Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery
    Shi, Yang
    Noelle, Daniel J.
    Wang, Meng
    Le, Anh V.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Ying Shirley
    Qiao, Yu
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 30956 - 30963
  • [49] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [50] Development of equivalent circuit model for thermal runaway in lithium-ion batteries
    Jeon, Chang Ho
    Lee, Yonggyun
    Kim, Ryanghoon
    Kim, Sangwon
    Kim, Dong Kyu
    JOURNAL OF ENERGY STORAGE, 2023, 74